對稱性
與南部-後藤作用量的關係
壓力-能量張量 是
δ
S
δ
h
a
b
=
T
a
b
=
0
{\displaystyle {\frac {\delta S}{\delta h^{ab}}}=T_{ab}=0}
度量張量
h
a
b
{\displaystyle h^{ab}}
的歐拉–拉格朗日方程 是
T
a
b
=
−
2
−
h
δ
S
δ
h
a
b
{\displaystyle T^{ab}={\frac {-2}{\sqrt {-h}}}{\frac {\delta S}{\delta h_{ab}}}}
而且
δ
−
h
=
−
1
2
−
h
h
a
b
δ
h
a
b
{\displaystyle \delta {\sqrt {-h}}=-{\frac {1}{2}}{\sqrt {-h}}h_{ab}\delta h^{ab}}
所以
δ
S
δ
h
a
b
=
T
2
−
h
(
G
a
b
−
1
2
h
a
b
h
c
d
G
c
d
)
{\displaystyle {\frac {\delta S}{\delta h^{ab}}}={\frac {T}{2}}{\sqrt {-h}}\left(G_{ab}-{\frac {1}{2}}h_{ab}h^{cd}G_{cd}\right)}
其中
G
a
b
=
g
μ
ν
∂
a
X
μ
∂
b
X
ν
{\displaystyle G_{ab}=g_{\mu \nu }\partial _{a}X^{\mu }\partial _{b}X^{\nu }}
。則
T
a
b
=
T
(
G
a
b
−
1
2
h
a
b
h
c
d
G
c
d
)
=
0
{\displaystyle T_{ab}=T\left(G_{ab}-{\frac {1}{2}}h_{ab}h^{cd}G_{cd}\right)=0}
G
a
b
=
1
2
h
a
b
h
c
d
G
c
d
{\displaystyle G_{ab}={\frac {1}{2}}h_{ab}h^{cd}G_{cd}}
G
=
d
e
t
(
G
a
b
)
=
1
4
h
(
h
c
d
G
c
d
)
2
{\displaystyle G=\mathrm {det} \left(G_{ab}\right)={\frac {1}{4}}h\left(h^{cd}G_{cd}\right)^{2}}
若使用
−
h
=
2
−
G
h
c
d
G
c
d
{\displaystyle {\sqrt {-h}}={\frac {2{\sqrt {-G}}}{h^{cd}G_{cd}}}}
則S成為南後作用量 :
S
=
T
2
∫
d
2
σ
−
h
h
a
b
G
a
b
=
T
2
∫
d
2
σ
2
−
G
h
c
d
G
c
d
h
a
b
G
a
b
=
T
∫
d
2
σ
−
G
{\displaystyle S={T \over 2}\int \mathrm {d} ^{2}\sigma {\sqrt {-h}}h^{ab}G_{ab}={T \over 2}\int \mathrm {d} ^{2}\sigma {\frac {2{\sqrt {-G}}}{h^{cd}G_{cd}}}h^{ab}G_{ab}=T\int \mathrm {d} ^{2}\sigma {\sqrt {-G}}}
因為S是線性 的,P作用的量子化 過程比較容易。
參見
註腳
參考文獻
Polchinski (Nov, 1994). What is String Theory , NSF-ITP-94-97, 153pp, arXiv:hep-th/9411028v1
Ooguri, Yin (Feb, 1997). TASI Lectures on Perturbative String Theories , UCB-PTH-96/64, LBNL-39774, 80pp, arXiv:hep-th/9612254v3