PDS 70半人馬座V1032)是在半人馬座的一顆非常年輕的金牛T星。它距離地球 370光年(110秒差距),它的質量為0.76 M,年齡大約只有540萬年[3]。這顆恆星有一個原行星盤,包含兩顆新生的系外行星,分別命名為PDS 70b和PDS 70c。這兩顆行星已經被歐洲南方天文台甚大望遠鏡直接成像。PDS 70b是第一個被確認直接成像的原行星 [6][7][3]

PDS 70

PDS 70的原行星盤與位於右側的行星PDS 70b
觀測資料
曆元 J2000
星座 半人馬座
星官
赤經 14h 08m 10.15455s[1]
赤緯 -41° 23′ 52.5733″[1]
視星等(V) 12[2]
特性
演化阶段主序前星
金牛T星
光谱分类K7[3]
U−B 色指数0.71[4]
B−V 色指数1.06[4]
天体测定
徑向速度 (Rv)0.74±3.22[1] km/s
自行 (μ) 赤经:-29.697 mas/yr
赤纬:-24.041 mas/yr
视差 (π)8.8975 ± 0.0191[1] mas
距离366.6 ± 0.8 ly
(112.4 ± 0.2 pc)
詳細資料
質量0.76 ± 0.02[3] M
半徑1.26 ± 0.15[3] R
亮度0.35 ± 0.09[3] L
溫度3972 ± 36[3] K
自轉~50 days[5]
自轉速度 (v sin i)~10[5] km/s
年齡5.4 ± 1[3] Myr
其他命名
V1032 Cen、2MASS J14081015-4123525、IRAS 14050−4109
參考資料庫
SIMBAD资料

發現和命名

 
根據「TESS」數據繪製 PDS 70(也稱為半人馬座V1032)的光變曲線 [8]

這顆恆星名稱中的「PDS」代表Pico dos Dias天文台英语Pico dos Dias Observatory一項基於IRAS衛星對主序前星顏色的調查[9]。 根據這些紅外顏色,PDS70在1992年被確認為金牛座T變星[10]。PDS 70的亮度準週期性變化,在可見光下以百分之幾星等的幅度變動[11]。天文文獻中對該恆星週期的量測不一致,從3.007天到5.1或5.6天不等[12][13]

原行星盤

 
ALMA圖像解析的系外行星PDS 70c與周圍環行星盤。

在1992年,PDS 70首次被假設周圍存在著原行星盤[14],並於2006年在甚大望遠鏡上使用相位掩星日冕儀進行全面成像[2],得到盤的半徑約為140 au。在2012年,在盤中發現一個巨大的空隙(~65 au),這被認為是由行星形成引起的[5][15]

後來發現該空隙有多個區域:在80 au中不存在大塵埃顆粒,而僅在先前觀察到的65 au中不存在小塵埃顆粒。空隙的整體形狀存在不對稱性;這些因素表明,可能有多個行星影響空隙的形狀和塵埃分佈[16]

行星系統

PDS 70的行星系[17][18]
成員
(依恆星距離)
质量 半長軸
(AU)
轨道周期
()
離心率 傾角 半径
b 7.0+0.5
 MJ
22.7+2.0
−0.5
45108+3580
−1790
0.17+0.06
[19]
131.0+2.9
−2.6
[19]°
1.75+0.75
 RJ
c 4.4+1.1
 MJ
30.2+2.0
−2.4
69945+5771
−11500
0.037+0.041
−0.025
[19]
130.5+2.5
−2.4
[19]°
原行星盤 ~65 — 140 AU ~130°

在2018年發表的結果中,盤中的一顆名為PDS 70 b的行星在甚大望遠鏡(VLT)上用SPHERE行星成像儀成像[3][7]。據估計,這顆行星的質量是木星的幾倍,被認為溫度約為1000 °C,和雲霧繚繞的大氣層;它的軌道半徑近似3.22 × 109公里(21.5天文單位),公轉一圈大約需要120年的時間。

行星PDS 70b的發射光譜是灰色的,沒有任何特徵,到2021年還沒有檢測到任何分子物種[20]

第二顆行星,PDS 70 c,於2019年使用VLT的MUSE(積分場光譜儀)發現[21]。這顆行星繞主恆星運行的距離為5.31 × 109公里(35.5天文單位),比PDS 70 b更遠[21]。PDS 70 c與PDS 70 b接近1:2軌道共振,這意味著PDS 70 b每完成近兩圈,PDS 70 c就完成近一圈[21]

環行星盤

建模預測PDS 70 b已經獲得了自己的吸積盤[6][22]。吸積盤在2019年的觀測得到證實[23],並且測得吸積率至少為每年5*10−7木星質量[24]。2021年,採用更新方法和數據的一項研究表明,吸積率較低,為1.4+0.2
*10−8 MJ/年[25]。目前尚不清楚如何將這些結果相互協調以及與現有的行星吸積模型相協調;未來對吸積機制和Hα排放產生的研究應該能提供清晰的思路[26]。吸積盤的光學厚度半徑3.0+0.2
RJ,比行星本身大得多。其測熱溫度為1193+20
K[17]

2019年7月,使用阿塔卡瑪大型毫米及次毫米波陣列(ALMA)的天文學家報告了有史以來首次探測到衛星形成的環行星盤英语Circumplanetary disk。在PDS 70 c附近檢測到該圓盤,在PDS 70 b附近觀察到一個潛在的圓盤[27][28][29]。該圓盤由加州理工領導的研究人員使用毛納基山凱克天文台確認,其研究於2020年5月發表[30]。PDS 70 c周圍的環行星盤影像於2021年11月被公佈[31]

可能的同軌天體

在2023年7月,宣佈可能探測到與PDS 70b行星共軌的碎片雲。這些碎片的質量被認為是月球質量的0.03-2倍,可能是特洛伊行星英语Co-orbital configuration#Trojan planets或正在形成的行星的證據[32][33]

相關條目

參考資料

  1. ^ 1.0 1.1 1.2 1.3 Vallenari, A.; et al. Gaia Data Release 3. Summary of the content and survey properties. Astronomy & Astrophysics. 2022. arXiv:2208.00211 . doi:10.1051/0004-6361/202243940 .  已忽略未知参数|collaboration= (帮助) Gaia DR3 record for this source at VizieR.
  2. ^ 2.0 2.1 Riaud, P.; Mawet, D.; Absil, O.; Boccaletti, A.; Baudoz, P.; Herwats, E.; Surdej, J. Coronagraphic imaging of three weak-line T Tauri stars: evidence of planetary formation around PDS 70 (PDF). Astronomy & Astrophysics. 2006, 458 (1): 317–325 [2023-07-21]. Bibcode:2006A&A...458..317R. doi:10.1051/0004-6361:20065232 . (原始内容存档 (PDF)于2017-09-22). 
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Keppler, M; et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70. Astronomy & Astrophysics. 2018, 617: A44. Bibcode:2018A&A...617A..44K. S2CID 49562730. arXiv:1806.11568 . doi:10.1051/0004-6361/201832957. 
  4. ^ 4.0 4.1 Gregorio-Hetem, J.; Hetem, A. Classification of a selected sample of weak T Tauri stars. Monthly Notices of the Royal Astronomical Society. 2002, 336 (1): 197–206. Bibcode:2002MNRAS.336..197G. doi:10.1046/j.1365-8711.2002.05716.x . 
  5. ^ 5.0 5.1 5.2 Hashimoto, J.; et al. Polarimetric Imaging of Large Cavity Structures in the Pre-Transitional Protoplanetary Disk Around PDS 70: Observations of the Disk. The Astrophysical Journal. 2012, 758 (1): L19. Bibcode:2012ApJ...758L..19H. S2CID 13691976. arXiv:1208.2075 . doi:10.1088/2041-8205/758/1/L19. 
  6. ^ 6.0 6.1 Staff. First confirmed image of newborn planet caught with ESO's VLT - Spectrum reveals cloudy atmosphere. EurekAlert!. 2 July 2018 [2 July 2018]. (原始内容存档于2018-07-02). 
  7. ^ 7.0 7.1 Müller, A; et al. Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk. Astronomy & Astrophysics. 2018, 617: L2. Bibcode:2018A&A...617L...2M. S2CID 49561725. arXiv:1806.11567 . doi:10.1051/0004-6361/201833584. 
  8. ^ MAST: Barbara A. Mikulski Archive for Space Telescopes. Space Telescope Science Institute. [8 December 2021]. (原始内容存档于2023-07-26). 
  9. ^ Sartori, Marılia J.; Gregorio-Hetem, Jane; Rodrigues, Claudia V.; Hetem, Annibal; Batalha, Celso. Analysis of the Pico dos Dias Survey Herbig Ae/Be Candidates. The Astronomical Journal. November 2009, 139 (1): 27–38. doi:10.1088/0004-6256/139/1/27 . 
  10. ^ Gregorio-Hetem, J.; Lepine, J. R. D.; Quast, G. R.; Torres, C. A. O.; de La Reza, R. A Search for T Tauri Stars Based on the IRAS Point Source Catalog. I.. The Astronomical Journal. February 1992, 103 (2): 549–563 [5 December 2021]. Bibcode:1992AJ....103..549G. doi:10.1086/116082. (原始内容存档于2023-03-04). 
  11. ^ V1032 Cen. The International Variable Star Index. AAVSO. [4 December 2021]. (原始内容存档于2023-03-05). 
  12. ^ Kiraga, M. ASAS Photometry of ROSAT Sources. I. Periodic Variable Stars Coincident with Bright Sources from the ROSAT All Sky Survey. Acta Astronomica. March 2012, 62 (1): 67–95 [4 December 2021]. Bibcode:2012AcA....62...67K. arXiv:1204.3825 . (原始内容存档于2023-03-04). 
  13. ^ Batalha, C. C.; Quast, G. R.; Torres, C. A. O.; Pereira, P. C. R.; Terra, M. A. O.; Jablonski, F.; Schiavon, R. P.; de la Reza, J. R.; Sartori, M. J. Photometric variability of southern T Tauri stars. Astronomy & Astrophysics Supplement Series. March 1998, 128 (3): 561–571 [4 December 2021]. Bibcode:1998A&AS..128..561B. doi:10.1051/aas:1998163. (原始内容存档于2023-03-04). 
  14. ^ Gregorio-Hetem, J.; Lepine, J. R. D.; Quast, G. R.; Torres, C. A. O.; de La Reza, R. A search for T Tauri stars based on the IRAS point source catalog. The Astronomical Journal. 1992, 103: 549. Bibcode:1992AJ....103..549G. doi:10.1086/116082. 
  15. ^ Giant Gap PDS 70's Protoplanetary Disk May Indicate Multiple Planets. SciTechDaily. 12 November 2012 [30 June 2018]. (原始内容存档于2020-10-28). 
  16. ^ Hashimoto, J.; et al. The Structure of Pre-Transitional Protoplanetary Disks. II. Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70. The Astrophysical Journal. 2015, 799 (1): 43. Bibcode:2015ApJ...799...43H. S2CID 53389813. arXiv:1411.2587 . doi:10.1088/0004-637X/799/1/43. 
  17. ^ 17.0 17.1 Stolker, Tomas; Marleau, Gabriel-Dominique; Cugno, Gabriele; Mollière, Paul; Quanz, Sascha P.; Todorov, Kamen O.; Kühn, Jonas, MIRACLES: Atmospheric characterization of directly imaged planets and substellar companions at 4–5 μm, Astronomy & Astrophysics, 2020, 644: A13, S2CID 221586208, arXiv:2009.04483 , doi:10.1051/0004-6361/202038878 
  18. ^ Planet PDS 70 c on exoplanet.eu. [2023-07-21]. (原始内容存档于2023-10-29). 
  19. ^ 19.0 19.1 19.2 19.3 Wang, J. J.; et al, Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗, The Astronomical Journal, 2021, 161 (3): 148, Bibcode:2021AJ....161..148W, S2CID 231583118, arXiv:2101.04187 , doi:10.3847/1538-3881/abdb2d 
  20. ^ Cugno, G.; Patapis, P.; Stolker, T.; Quanz, S. P.; Boehle, A.; Hoeijmakers, H. J.; Marleau, G.-D.; Mollière, P.; Nasedkin, E.; Snellen, I. A. G., Molecular mapping of the PDS70 system, Astronomy & Astrophysics, 2021, 653: A12, S2CID 235358211, arXiv:2106.03615 , doi:10.1051/0004-6361/202140632 
  21. ^ 21.0 21.1 21.2 A Pair of Fledgling Planets Directly Seen Growing Around a Young Star. hubblesite.org (NASA). 3 June 2019 [3 June 2019]. (原始内容存档于2019-06-09). 
  22. ^ Clery, D. In a first, astronomers witness the birth of a planet from gas and dust. Science. 2018. S2CID 134883080. doi:10.1126/science.aau6469. 
  23. ^ Christiaens, V.; Cantalloube, F.; Casassus, S.; Price, D.J.; Absil, O.; Pinte, C.; Girard, J.; Montesinos, M. Evidence for a circumplanetary disc around protoplanet PDS 70 b. The Astrophysical Journal. 15 May 2019, 877 (2): L33. Bibcode:2019ApJ...877L..33C. S2CID 155100321. arXiv:1905.06370 . doi:10.3847/2041-8213/ab212b (英语). 
  24. ^ Hashimoto, Jun; Aoyama, Yuhiko; Konishi, Mihoko; Uyama, Taichi; Takasao, Shinsuke; Ikoma, Masahiro; Tanigawa, Takayuki. Accretion Properties of PDS 70b with MUSE. The Astronomical Journal. 2020, 159 (5): 222. Bibcode:2020AJ....159..222H. S2CID 212747630. arXiv:2003.07922 . doi:10.3847/1538-3881/ab811e. 
  25. ^ Zhou, Yifan; Bowler, Brendan P.; Wagner, Kevin R.; Schneider, Glenn; Apai, Dániel; Kraus, Adam L.; Close, Laird M.; Herczeg, Gregory J.; Fang, Min, Hubble Space Telescope UV and Hα Measurements of the Accretion Excess Emission from the Young Giant Planet PDS 70 B, The Astronomical Journal, 2021, 161 (5): 244, Bibcode:2021AJ....161..244Z, S2CID 233443901, arXiv:2104.13934 , doi:10.3847/1538-3881/abeb7a 
  26. ^ https://www.nasaspaceflight.com/2021/05/hubble-uv-exoplanet-growth-measured/页面存档备份,存于互联网档案馆...and that’s lower than super-Jupiter gas giant planet formation models predict. Zhou et al. are quick to caution that their calculations are a snapshot in time. Additional observation, multi-decade, multi-century observations will reveal if accretion rates fluctuate greatly over time as planets go through growth spurts, so to speak, followed by periods of less active formation or if “Hα production in planetary accretion shocks is more efficient than [previous] models predicted, or [if] we underestimated the accretion luminosity/rate,” noted Zhou et al. in their paper published in April 2021 issue of The Astronomical Journal. The team further noted, “By combining our observations with planetary accretion shock models that predict both UV and Hα flux, we can improve the accretion rate measurement and advance our understanding of the accretion mechanisms of gas giant planets.”
  27. ^ Isella, Andrea; et al. Detection of Continuum Submillimeter Emission Associated with Candidate Protoplanets. The Astrophysical Journal Letters. 11 July 2019, 879 (2): L25. Bibcode:2019ApJ...879L..25I. S2CID 189897829. arXiv:1906.06308 . doi:10.3847/2041-8213/ab2a12. 
  28. ^ Blue, Charles E. 'Moon-forming' Circumplanetary Disk Discovered in Distant Star System. National Radio Astronomy Observatory. 11 July 2019 [11 July 2019]. (原始内容存档于2019-07-11). 
  29. ^ Carne, Nick. 'Moon-forming' disk found in distant star system - Discovery helps confirm theories of planet formation, astronomers say.. Cosmos. 13 July 2019 [12 July 2019]. (原始内容存档于12 July 2019). 
  30. ^ Astronomers confirm existence of two giant newborn planets in PDS 70 system. phys.org. [20 May 2020]. (原始内容存档于2023-03-04) (英语). 
  31. ^ Parks, Jake. Snapshot: ALMA spots moon-forming disk around distant exoplanet - This stellar shot serves as the first unambiguous detection of a circumplanetary disk capable of brewing its own moon.. Astronomy. 8 November 2021 [9 November 2021]. (原始内容存档于2023-03-31). 
  32. ^ Balsalobre-Ruza, O.; de Gregorio-Monsalvo, I.; et al. Tentative co-orbital submillimeter emission within the Lagrangian region L5 of the protoplanet PDS 70 b. Astronomy & Astrophysics. July 2023, 675: A172. doi:10.1051/0004-6361/202346493. 
  33. ^ Does this exoplanet have a sibling sharing the same orbit?. ESO. 19 July 2023 [19 July 2023]. (原始内容存档于2023-08-03). 

外部連結