PDS 70半人马座V1032)是在半人马座的一颗非常年轻的金牛T星。它距离地球 370光年(110秒差距),它的质量为0.76 M,年龄大约只有540万年[3]。这颗恒星有一个原行星盘,包含两颗新生的系外行星,分别命名为PDS 70b和PDS 70c。这两颗行星已经被欧洲南方天文台甚大望远镜直接成像。PDS 70b是第一个被确认直接成像的原行星 [6][7][3]

PDS 70

PDS 70的原行星盘与位于右侧的行星PDS 70b
观测资料
历元 J2000
星座 半人马座
星官
赤经 14h 08m 10.15455s[1]
赤纬 -41° 23′ 52.5733″[1]
视星等(V) 12[2]
特性
演化阶段主序前星
金牛T星
光谱分类K7[3]
U−B 色指数0.71[4]
B−V 色指数1.06[4]
天体测定
径向速度 (Rv)0.74±3.22[1] km/s
自行 (μ) 赤经:-29.697 mas/yr
赤纬:-24.041 mas/yr
视差 (π)8.8975 ± 0.0191[1] mas
距离366.6 ± 0.8 ly
(112.4 ± 0.2 pc)
详细资料
质量0.76 ± 0.02[3] M
半径1.26 ± 0.15[3] R
亮度0.35 ± 0.09[3] L
温度3972 ± 36[3] K
自转~50 days[5]
自转速度 (v sin i)~10[5] km/s
年龄5.4 ± 1[3] Myr
其他命名
V1032 Cen、2MASS J14081015-4123525、IRAS 14050−4109
参考数据库
SIMBAD资料

发现和命名

 
根据“TESS”数据绘制 PDS 70(也称为半人马座V1032)的光变曲线 [8]

这颗恒星名称中的“PDS”代表Pico dos Dias天文台英语Pico dos Dias Observatory一项基于IRAS卫星对主序前星颜色的调查[9]。 根据这些红外颜色,PDS70在1992年被确认为金牛座T变星[10]。PDS 70的亮度准周期性变化,在可见光下以百分之几星等的幅度变动[11]。天文文献中对该恒星周期的量测不一致,从3.007天到5.1或5.6天不等[12][13]

原行星盘

 
ALMA图像解析的系外行星PDS 70c与周围环行星盘。

在1992年,PDS 70首次被假设周围存在着原行星盘[14],并于2006年在甚大望远镜上使用相位掩星日冕仪进行全面成像[2],得到盘的半径约为140 au。在2012年,在盘中发现一个巨大的空隙(~65 au),这被认为是由行星形成引起的[5][15]

后来发现该空隙有多个区域:在80 au中不存在大尘埃颗粒,而仅在先前观察到的65 au中不存在小尘埃颗粒。空隙的整体形状存在不对称性;这些因素表明,可能有多个行星影响空隙的形状和尘埃分布[16]

行星系统

PDS 70的行星系[17][18]
成员
(依恒星距离)
质量 半长轴
(AU)
轨道周期
()
离心率 倾角 半径
b 7.0+0.5
 MJ
22.7+2.0
−0.5
45108+3580
−1790
0.17+0.06
[19]
131.0+2.9
−2.6
[19]°
1.75+0.75
 RJ
c 4.4+1.1
 MJ
30.2+2.0
−2.4
69945+5771
−11500
0.037+0.041
−0.025
[19]
130.5+2.5
−2.4
[19]°
原行星盘 ~65 — 140 AU ~130°

在2018年发表的结果中,盘中的一颗名为PDS 70 b的行星在甚大望远镜(VLT)上用SPHERE行星成像仪成像[3][7]。据估计,这颗行星的质量是木星的几倍,被认为温度约为1000 °C,和云雾缭绕的大气层;它的轨道半径近似3.22 × 109千米(21.5天文单位),公转一圈大约需要120年的时间。

行星PDS 70b的发射光谱是灰色的,没有任何特征,到2021年还没有检测到任何分子物种[20]

第二颗行星,PDS 70 c,于2019年使用VLT的MUSE(积分场光谱仪)发现[21]。这颗行星绕主恒星运行的距离为5.31 × 109千米(35.5天文单位),比PDS 70 b更远[21]。PDS 70 c与PDS 70 b接近1:2轨道共振,这意味着PDS 70 b每完成近两圈,PDS 70 c就完成近一圈[21]

环行星盘

建模预测PDS 70 b已经获得了自己的吸积盘[6][22]。吸积盘在2019年的观测得到证实[23],并且测得吸积率至少为每年5*10−7木星质量[24]。2021年,采用更新方法和数据的一项研究表明,吸积率较低,为1.4+0.2
*10−8 MJ/年[25]。目前尚不清楚如何将这些结果相互协调以及与现有的行星吸积模型相协调;未来对吸积机制和Hα排放产生的研究应该能提供清晰的思路[26]。吸积盘的光学厚度半径3.0+0.2
RJ,比行星本身大得多。其测热温度为1193+20
K[17]

2019年7月,使用阿塔卡玛大型毫米及次毫米波阵列(ALMA)的天文学家报告了有史以来首次探测到卫星形成的环行星盘英语Circumplanetary disk。在PDS 70 c附近检测到该圆盘,在PDS 70 b附近观察到一个潜在的圆盘[27][28][29]。该圆盘由加州理工领导的研究人员使用毛纳基山凯克天文台确认,其研究于2020年5月发表[30]。PDS 70 c周围的环行星盘影像于2021年11月被公布[31]

可能的同轨天体

在2023年7月,宣布可能探测到与PDS 70b行星共轨的碎片云。这些碎片的质量被认为是月球质量的0.03-2倍,可能是特洛伊行星英语Co-orbital configuration#Trojan planets或正在形成的行星的证据[32][33]

相关条目

参考资料

  1. ^ 1.0 1.1 1.2 1.3 Vallenari, A.; et al. Gaia Data Release 3. Summary of the content and survey properties. Astronomy & Astrophysics. 2022. arXiv:2208.00211 . doi:10.1051/0004-6361/202243940 .  已忽略未知参数|collaboration= (帮助) Gaia DR3 record for this source at VizieR.
  2. ^ 2.0 2.1 Riaud, P.; Mawet, D.; Absil, O.; Boccaletti, A.; Baudoz, P.; Herwats, E.; Surdej, J. Coronagraphic imaging of three weak-line T Tauri stars: evidence of planetary formation around PDS 70 (PDF). Astronomy & Astrophysics. 2006, 458 (1): 317–325 [2023-07-21]. Bibcode:2006A&A...458..317R. doi:10.1051/0004-6361:20065232 . (原始内容存档 (PDF)于2017-09-22). 
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Keppler, M; et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70. Astronomy & Astrophysics. 2018, 617: A44. Bibcode:2018A&A...617A..44K. S2CID 49562730. arXiv:1806.11568 . doi:10.1051/0004-6361/201832957. 
  4. ^ 4.0 4.1 Gregorio-Hetem, J.; Hetem, A. Classification of a selected sample of weak T Tauri stars. Monthly Notices of the Royal Astronomical Society. 2002, 336 (1): 197–206. Bibcode:2002MNRAS.336..197G. doi:10.1046/j.1365-8711.2002.05716.x . 
  5. ^ 5.0 5.1 5.2 Hashimoto, J.; et al. Polarimetric Imaging of Large Cavity Structures in the Pre-Transitional Protoplanetary Disk Around PDS 70: Observations of the Disk. The Astrophysical Journal. 2012, 758 (1): L19. Bibcode:2012ApJ...758L..19H. S2CID 13691976. arXiv:1208.2075 . doi:10.1088/2041-8205/758/1/L19. 
  6. ^ 6.0 6.1 Staff. First confirmed image of newborn planet caught with ESO's VLT - Spectrum reveals cloudy atmosphere. EurekAlert!. 2 July 2018 [2 July 2018]. (原始内容存档于2018-07-02). 
  7. ^ 7.0 7.1 Müller, A; et al. Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk. Astronomy & Astrophysics. 2018, 617: L2. Bibcode:2018A&A...617L...2M. S2CID 49561725. arXiv:1806.11567 . doi:10.1051/0004-6361/201833584. 
  8. ^ MAST: Barbara A. Mikulski Archive for Space Telescopes. Space Telescope Science Institute. [8 December 2021]. (原始内容存档于2023-07-26). 
  9. ^ Sartori, Marılia J.; Gregorio-Hetem, Jane; Rodrigues, Claudia V.; Hetem, Annibal; Batalha, Celso. Analysis of the Pico dos Dias Survey Herbig Ae/Be Candidates. The Astronomical Journal. November 2009, 139 (1): 27–38. doi:10.1088/0004-6256/139/1/27 . 
  10. ^ Gregorio-Hetem, J.; Lepine, J. R. D.; Quast, G. R.; Torres, C. A. O.; de La Reza, R. A Search for T Tauri Stars Based on the IRAS Point Source Catalog. I.. The Astronomical Journal. February 1992, 103 (2): 549–563 [5 December 2021]. Bibcode:1992AJ....103..549G. doi:10.1086/116082. (原始内容存档于2023-03-04). 
  11. ^ V1032 Cen. The International Variable Star Index. AAVSO. [4 December 2021]. (原始内容存档于2023-03-05). 
  12. ^ Kiraga, M. ASAS Photometry of ROSAT Sources. I. Periodic Variable Stars Coincident with Bright Sources from the ROSAT All Sky Survey. Acta Astronomica. March 2012, 62 (1): 67–95 [4 December 2021]. Bibcode:2012AcA....62...67K. arXiv:1204.3825 . (原始内容存档于2023-03-04). 
  13. ^ Batalha, C. C.; Quast, G. R.; Torres, C. A. O.; Pereira, P. C. R.; Terra, M. A. O.; Jablonski, F.; Schiavon, R. P.; de la Reza, J. R.; Sartori, M. J. Photometric variability of southern T Tauri stars. Astronomy & Astrophysics Supplement Series. March 1998, 128 (3): 561–571 [4 December 2021]. Bibcode:1998A&AS..128..561B. doi:10.1051/aas:1998163. (原始内容存档于2023-03-04). 
  14. ^ Gregorio-Hetem, J.; Lepine, J. R. D.; Quast, G. R.; Torres, C. A. O.; de La Reza, R. A search for T Tauri stars based on the IRAS point source catalog. The Astronomical Journal. 1992, 103: 549. Bibcode:1992AJ....103..549G. doi:10.1086/116082. 
  15. ^ Giant Gap PDS 70's Protoplanetary Disk May Indicate Multiple Planets. SciTechDaily. 12 November 2012 [30 June 2018]. (原始内容存档于2020-10-28). 
  16. ^ Hashimoto, J.; et al. The Structure of Pre-Transitional Protoplanetary Disks. II. Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70. The Astrophysical Journal. 2015, 799 (1): 43. Bibcode:2015ApJ...799...43H. S2CID 53389813. arXiv:1411.2587 . doi:10.1088/0004-637X/799/1/43. 
  17. ^ 17.0 17.1 Stolker, Tomas; Marleau, Gabriel-Dominique; Cugno, Gabriele; Mollière, Paul; Quanz, Sascha P.; Todorov, Kamen O.; Kühn, Jonas, MIRACLES: Atmospheric characterization of directly imaged planets and substellar companions at 4–5 μm, Astronomy & Astrophysics, 2020, 644: A13, S2CID 221586208, arXiv:2009.04483 , doi:10.1051/0004-6361/202038878 
  18. ^ Planet PDS 70 c on exoplanet.eu. [2023-07-21]. (原始内容存档于2023-10-29). 
  19. ^ 19.0 19.1 19.2 19.3 Wang, J. J.; et al, Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗, The Astronomical Journal, 2021, 161 (3): 148, Bibcode:2021AJ....161..148W, S2CID 231583118, arXiv:2101.04187 , doi:10.3847/1538-3881/abdb2d 
  20. ^ Cugno, G.; Patapis, P.; Stolker, T.; Quanz, S. P.; Boehle, A.; Hoeijmakers, H. J.; Marleau, G.-D.; Mollière, P.; Nasedkin, E.; Snellen, I. A. G., Molecular mapping of the PDS70 system, Astronomy & Astrophysics, 2021, 653: A12, S2CID 235358211, arXiv:2106.03615 , doi:10.1051/0004-6361/202140632 
  21. ^ 21.0 21.1 21.2 A Pair of Fledgling Planets Directly Seen Growing Around a Young Star. hubblesite.org (NASA). 3 June 2019 [3 June 2019]. (原始内容存档于2019-06-09). 
  22. ^ Clery, D. In a first, astronomers witness the birth of a planet from gas and dust. Science. 2018. S2CID 134883080. doi:10.1126/science.aau6469. 
  23. ^ Christiaens, V.; Cantalloube, F.; Casassus, S.; Price, D.J.; Absil, O.; Pinte, C.; Girard, J.; Montesinos, M. Evidence for a circumplanetary disc around protoplanet PDS 70 b. The Astrophysical Journal. 15 May 2019, 877 (2): L33. Bibcode:2019ApJ...877L..33C. S2CID 155100321. arXiv:1905.06370 . doi:10.3847/2041-8213/ab212b (英语). 
  24. ^ Hashimoto, Jun; Aoyama, Yuhiko; Konishi, Mihoko; Uyama, Taichi; Takasao, Shinsuke; Ikoma, Masahiro; Tanigawa, Takayuki. Accretion Properties of PDS 70b with MUSE. The Astronomical Journal. 2020, 159 (5): 222. Bibcode:2020AJ....159..222H. S2CID 212747630. arXiv:2003.07922 . doi:10.3847/1538-3881/ab811e. 
  25. ^ Zhou, Yifan; Bowler, Brendan P.; Wagner, Kevin R.; Schneider, Glenn; Apai, Dániel; Kraus, Adam L.; Close, Laird M.; Herczeg, Gregory J.; Fang, Min, Hubble Space Telescope UV and Hα Measurements of the Accretion Excess Emission from the Young Giant Planet PDS 70 B, The Astronomical Journal, 2021, 161 (5): 244, Bibcode:2021AJ....161..244Z, S2CID 233443901, arXiv:2104.13934 , doi:10.3847/1538-3881/abeb7a 
  26. ^ https://www.nasaspaceflight.com/2021/05/hubble-uv-exoplanet-growth-measured/页面存档备份,存于互联网档案馆...and that’s lower than super-Jupiter gas giant planet formation models predict. Zhou et al. are quick to caution that their calculations are a snapshot in time. Additional observation, multi-decade, multi-century observations will reveal if accretion rates fluctuate greatly over time as planets go through growth spurts, so to speak, followed by periods of less active formation or if “Hα production in planetary accretion shocks is more efficient than [previous] models predicted, or [if] we underestimated the accretion luminosity/rate,” noted Zhou et al. in their paper published in April 2021 issue of The Astronomical Journal. The team further noted, “By combining our observations with planetary accretion shock models that predict both UV and Hα flux, we can improve the accretion rate measurement and advance our understanding of the accretion mechanisms of gas giant planets.”
  27. ^ Isella, Andrea; et al. Detection of Continuum Submillimeter Emission Associated with Candidate Protoplanets. The Astrophysical Journal Letters. 11 July 2019, 879 (2): L25. Bibcode:2019ApJ...879L..25I. S2CID 189897829. arXiv:1906.06308 . doi:10.3847/2041-8213/ab2a12. 
  28. ^ Blue, Charles E. 'Moon-forming' Circumplanetary Disk Discovered in Distant Star System. National Radio Astronomy Observatory. 11 July 2019 [11 July 2019]. (原始内容存档于2019-07-11). 
  29. ^ Carne, Nick. 'Moon-forming' disk found in distant star system - Discovery helps confirm theories of planet formation, astronomers say.. Cosmos. 13 July 2019 [12 July 2019]. (原始内容存档于12 July 2019). 
  30. ^ Astronomers confirm existence of two giant newborn planets in PDS 70 system. phys.org. [20 May 2020]. (原始内容存档于2023-03-04) (英语). 
  31. ^ Parks, Jake. Snapshot: ALMA spots moon-forming disk around distant exoplanet - This stellar shot serves as the first unambiguous detection of a circumplanetary disk capable of brewing its own moon.. Astronomy. 8 November 2021 [9 November 2021]. (原始内容存档于2023-03-31). 
  32. ^ Balsalobre-Ruza, O.; de Gregorio-Monsalvo, I.; et al. Tentative co-orbital submillimeter emission within the Lagrangian region L5 of the protoplanet PDS 70 b. Astronomy & Astrophysics. July 2023, 675: A172. doi:10.1051/0004-6361/202346493. 
  33. ^ Does this exoplanet have a sibling sharing the same orbit?. ESO. 19 July 2023 [19 July 2023]. (原始内容存档于2023-08-03). 

外部链接