狄拉克錐


狄拉克錐是一種特殊二維材料中的電子能帶結構,在此結構中,電子具有像光一樣的相對論性質。科研人員認為狄拉克錐可能是通向未來超級晶片量子計算機超導和桌面相對論技術的路徑。[1][2][3][4]

石墨烯的電子能帶結構中的各向同性狄拉克錐
2012年4月24日,麻省理工學院在其官方首頁報道了唐-崔瑟豪斯理論 (Tang-Dresselhaus Theory),該機構的科學家唐爽崔瑟豪斯夫人 (Mildred Dresselhaus) 在各項異性狄拉克錐方面取得突破,將引領半導體行業的晶片設計和熱電能源領域。

典型的狄拉克錐材料包括石墨烯拓撲絕緣體薄膜和其他新型納米材料[1][5][6] 這些特殊二維材料中電子的能量動量具有線性的色散關係,因此其費米能級附近的電子能帶結構呈現出上下兩個錐體,分別代表電子和空穴。兩個錐體的頂端剛好相連,形成「零帶隙」的半金屬相.

狄拉克錐的名字來源於狄拉克方程,由保羅·狄拉克 (Paul Dirac) 提出,用以統一描述物質的量子力學效應和相對論效應。狄拉克錐可以是各向同性,也可是各向異性的。石墨烯中存在各向同性的狄拉克錐,由飛利浦·華萊士英語P. R. Wallace (P. R. Wallace) 於1947提出[7],並由諾貝爾物理學獎得主安德烈·海姆 (Andre Geim) 和康斯坦丁·諾沃肖洛夫 (Konstantin Novoselov) 於2005年首次在實驗中觀察到。[8] 麻省理工學院唐爽崔瑟豪斯夫人(Mildred Dresselhaus)於2012年在其唐-崔瑟豪斯理論 (Tang-Dresselhaus Theory) 中首次提出了系統性構建各向異性狄拉克錐的方法。[9][10][11]

描述

量子力學中,狄拉克錐描述 [12]價帶和導帶的能量在二維晶格k空間中,除了零維狄拉克點所在的位置外,其他任何動量的價帶和導帶能量都不相等。由於是錐型,電傳導可以用無質量費米子電荷載流子來描述,在理論上這種情況可由相對論性的狄拉克方程來處理。 [13]無質量費米子可以導致各種奇異的量子霍爾效應、或是拓撲材料中的磁電效應和超高載流子遷移率[14] [15]在 2008-2009 年實驗上使用角分辨光電子能譜(ARPES) 對鉀-石墨插層化合物KC 8 [16]和幾種鉍基合金的狄拉克錐進行了觀察。[17] [18] [15]

狄拉克錐是二維材料 (像是單層石墨烯)或拓撲絕緣體的表面態的特徵。狄拉克錐在材料中是線性色散關係,由能量與晶體動量的兩個分量k xk y來描述。然而,這個概念可以擴展到三維材料,其中狄拉克半金屬由能量與k xk yk z的線性色散關係來定義。在動量空間中,色散關係為超圓錐體,它具有雙重簡併能帶,也在狄拉克點相交。 [15]狄拉克半金屬同時包含時間反演對稱性和空間反演對稱性;當其中一個對稱性被破壞時,狄拉克點可以分裂成兩個外爾點,材料變成外爾半金屬。 [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] 在2014年,實驗上利用ARPES對狄拉克半金屬砷化鎘 的能帶結構進行了直接觀測。 [30] [31] [32]

模擬系統

已在許多物理系統實現狄拉克點,例如等離子體學、聲子學或納米光子學(微腔、 [33]光子晶體[34] )。

參看

參考文獻

  1. ^ 1.0 1.1 Novoselov, K.S.; Geim, A.K. The rise of graphene. Nature Materials. 2007, 6 (3): 183–191. doi:10.1038/nmat1849. 
  2. ^ Hasan, M.Z.; Kane, C.L. Topological Insulators. Rev. Mod. Phys. 2010, 82 (4): 3045. doi:10.1103/revmodphys.82.3045. 
  3. ^ Superconductors: Dirac cones come in pairs. Advanced Institute for Materials Research. wpi-aimr.tohoku.ac.jp. Research Highlights. Tohoku University. 29 Aug 2011 [2 Mar 2018]. [失效連結]
  4. ^ Basic Research Needs for Microelectronics. 頁面存檔備份,存於互聯網檔案館) US Department of Energy, Office of Science, October 23-25, 2018.
  5. ^ Dirac cones could exist in bismuth–antimony films頁面存檔備份,存於互聯網檔案館). Physics World, Institute of Physics, April 17, 2012.
  6. ^ Hsieh, David. A topological Dirac insulator in a quantum spin Hall phase. Nature. 2008, 452: 970–974. doi:10.1038/nature06843. 
  7. ^ Wallace, P. R. The Band Theory of Graphite. Physical Review. 1947, 71 (9): 622–634. Bibcode:1947PhRv...71..622W. doi:10.1103/PhysRev.71.622. 
  8. ^ The Nobel Prize in Physics 2010 Press Release頁面存檔備份,存於互聯網檔案館). Nobelprize.org, October 5, 2010. Retrieved 2011-12-31.
  9. ^ New material shares many of graphene’s unusual properties. Thin films of bismuth-antimony have potential for new semiconductor chips, thermoelectric devices頁面存檔備份,存於互聯網檔案館). MIT News Office (April 24, 2012).
  10. ^ Tang, Shuang; Dresselhaus, Mildred. Constructing Anisotropic Single-Dirac-Cones in BiSb Thin Films. Nano Letters. 2012, 12 (4): 2021–2026. doi:10.1021/nl300064d. 
  11. ^ Tang, Shuang; Dresselhaus, Mildred. Constructing A Large Variety of Dirac-Cone Materials in the BiSb Thin Film System. Nanoscale. 2012, 4 (24): 7786–7790. doi:10.1039/C2NR32436A. 
  12. ^ Fuchs, Jean-Noël; Lim, Lih-King; Montambaux, Gilles. Interband tunneling near the merging transition of Dirac cones (PDF). Physical Review A. 2012, 86 (6): 063613 [2023-01-21]. Bibcode:2012PhRvA..86f3613F. S2CID 67850936. arXiv:1210.3703 . doi:10.1103/PhysRevA.86.063613. (原始內容 (PDF)存檔於2023-01-21). 
  13. ^ Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 10 Nov 2005, 438 (7065): 197–200 [2 Mar 2018]. Bibcode:2005Natur.438..197N. PMID 16281030. S2CID 3470761. arXiv:cond-mat/0509330 . doi:10.1038/nature04233. (原始內容存檔於2023-05-08). 
  14. ^ Two-dimensional Dirac materials: Structure, properties, and rarity. Phys.org. [25 May 2016]. (原始內容存檔於2023-01-21). 
  15. ^ 15.0 15.1 15.2 Hasan, M.Z.; Moore, J.E. Three-dimensional topological insulators. Annual Review of Condensed Matter Physics. 2011, 2: 55–78. Bibcode:2011ARCMP...2...55H. S2CID 11516573. arXiv:1011.5462 . doi:10.1146/annurev-conmatphys-062910-140432 (英語). 
  16. ^ Grüneis, A.; Attaccalite, C.; Rubio, A.; Vyalikh, D.V.; Molodtsov, S.L.; Fink, J.; et al. Angle-resolved photoemission study of the graphite intercalation compound KC8: A key to graphene. Physical Review B. 2009, 80 (7): 075431. Bibcode:2009PhRvB..80g5431G. doi:10.1103/PhysRevB.80.075431. hdl:10261/95912 . 
  17. ^ Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y.S.; Cava, R.J.; Hasan, M.Z. A topological Dirac insulator in a quantum spin Hall phase. Nature. 2008, 452 (7190): 970–974. Bibcode:2008Natur.452..970H. ISSN 0028-0836. PMID 18432240. S2CID 4402113. arXiv:0902.1356 . doi:10.1038/nature06843 (英語). 
  18. ^ Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J.H.; Meier, F.; et al. A tunable, topological insulator in the spin helical Dirac transport regime. Nature. 2009, 460 (7259): 1101–1105. Bibcode:2009Natur.460.1101H. PMID 19620959. S2CID 4369601. arXiv:1001.1590 . doi:10.1038/nature08234. 
  19. ^ Wehling, T.O.; Black-Schaffer, A.M.; Balatsky, A.V. Dirac materials. Advances in Physics. 2014, 63 (1): 1. Bibcode:2014AdPhy..63....1W. S2CID 118557449. arXiv:1405.5774 . doi:10.1080/00018732.2014.927109. 
  20. ^ Singh, Bahadur; Sharma, Ashutosh; Lin, H.; Hasan, M.Z.; Prasad, R.; Bansil, A. Topological electronic structure and Weyl semimetal in the TlBiSe2 class. Physical Review B. 2012-09-18, 86 (11): 115208. S2CID 119109505. arXiv:1209.5896 . doi:10.1103/PhysRevB.86.115208. 
  21. ^ Huang, S.-M.; Xu, S.-Y.; Belopolski, I.; Lee, C.-C.; Chang, G.; Wang, B.K.; et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nature Communications. 2015, 6: 7373. Bibcode:2015NatCo...6.7373H. PMC 4490374 . PMID 26067579. doi:10.1038/ncomms8373. 
  22. ^ Weng, Hongming; Fang, Chen; Fang, Zhong; Bernevig, B. Andrei; Dai, Xi. Weyl semimetal phase in non-centrosymmetric transition-metal monophosphides. Physical Review X. 2015, 5 (1): 011029. Bibcode:2015PhRvX...5a1029W. S2CID 15298985. arXiv:1501.00060 . doi:10.1103/PhysRevX.5.011029. 
  23. ^ Xu, S.-Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; et al. Discovery of a Weyl Fermion semimetal and topological Fermi arcs. Science. 2015, 349 (6248): 613–617 [2023-01-21]. Bibcode:2015Sci...349..613X. PMID 26184916. S2CID 206636457. arXiv:1502.03807 . doi:10.1126/science.aaa9297. (原始內容存檔於2023-01-21). 
  24. ^ Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Yuan, Zhujun; Bian, Guang; Chang, Tay-Rong; et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Physics. 2015, 11 (9): 748–754 [2023-01-21]. ISSN 1745-2481. S2CID 119118252. arXiv:1504.01350 . doi:10.1038/nphys3437. (原始內容存檔於2023-01-13) (英語). 
  25. ^ Huang, Xiaochun; Zhao, Lingxiao; Long, Yujia; Wang, Peipei; Chen, Dong; Yang, Zhanhai; et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3‑D Weyl semimetal TaAs. Physical Review X. 2015, 5 (3): 031023. Bibcode:2015PhRvX...5c1023H. S2CID 55929760. arXiv:1503.01304 . doi:10.1103/PhysRevX.5.031023. 
  26. ^ Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya; Yuan, Zhujun; Lin, Ziquan; Tong, Bingbing; et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nature Communications. 2016-02-25, 7 (1): 10735. ISSN 2041-1723. PMC 4773426 . PMID 26911701. doi:10.1038/ncomms10735  (英語). 
  27. ^ Schoop, Leslie M.; Ali, Mazhar N.; Straßer, Carola; Topp, Andreas; Varykhalov, Andrei; Marchenko, Dmitry; et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nature Communications. 2016, 7 (1): 11696. Bibcode:2016NatCo...711696S. ISSN 2041-1723. PMC 4895020 . PMID 27241624. arXiv:1509.00861 . doi:10.1038/ncomms11696. 
  28. ^ Neupane, M.; Belopolski, I.; Hosen, Md.M.; Sanchez, D.S.; Sankar, R.; Szlawska, M.; et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Physical Review B. 2016, 93 (20): 201104(R). ISSN 2469-9969. S2CID 118446447. arXiv:1604.00720 . doi:10.1103/PhysRevB.93.201104. 
  29. ^ Lu, Ling; Fu, Liang; Joannopoulos, John D.; Soljačic, Marin. Weyl points and line nodes in gyroid photonic crystals (PDF). Nature Photonics. 17 Mar 2013, 7 (4): 294–299 [2 Mar 2018]. Bibcode:2013NaPho...7..294L. S2CID 5144108. arXiv:1207.0478 . doi:10.1038/nphoton.2013.42. (原始內容存檔 (PDF)於2023-01-21). 
  30. ^ Neupane, Madhab; Xu, Su-Yang; Sankar, Raman; Nasser, Alidoust; Bian, Guang; Liu, Chang; et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nature Communications. 2014, 5: 3786. Bibcode:2014NatCo...5.3786N. PMID 24807399. arXiv:1309.7892 . doi:10.1038/ncomms4786 . 
  31. ^ Sankar, R.; Neupane, M.; Xu, S.-Y.; Butler, C.J.; Zeljkovic, I.; Panneer Muthuselvam, I.; et al. Large single crystal growth, transport property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd3As2. Scientific Reports. 2015, 5: 12966. Bibcode:2015NatSR...512966S. PMC 4642520 . PMID 26272041. doi:10.1038/srep12966. 
  32. ^ Borisenko, Sergey; Gibson, Quinn; Evtushinsky, Danil; Zabolotnyy, Volodymyr; Büchner, Bernd; Cava, Robert J. Experimental realization of a three-dimensional Dirac semimetal. Physical Review Letters. 2014, 113 (2): 027603. Bibcode:2014PhRvL.113b7603B. ISSN 0031-9007. PMID 25062235. S2CID 19882802. arXiv:1309.7978 . doi:10.1103/PhysRevLett.113.027603. 
  33. ^ Terças, H.; Flayac, H.; Solnyshkov, D. D.; Malpuech, G. Non-Abelian Gauge Fields in Photonic Cavities and Photonic Superfluids. Physical Review Letters. 2014-02-11, 112 (6): 066402. Bibcode:2014PhRvL.112f6402T. PMID 24580697. S2CID 10674352. arXiv:1303.4286 . doi:10.1103/PhysRevLett.112.066402. 
  34. ^ He, Wen-Yu; Chan, C. T. The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry. Scientific Reports. 2015-02-02, 5 (1): 8186. ISSN 2045-2322. PMC 4650825 . PMID 25640993. doi:10.1038/srep08186 (英語).