狄拉克锥


狄拉克锥是一种特殊二维材料中的电子能带结构,在此结构中,电子具有像光一样的相对论性质。科研人员认为狄拉克锥可能是通向未来超级芯片量子计算机超导和桌面相对论技术的路径。[1][2][3][4]

石墨烯的电子能带结构中的各向同性狄拉克锥
2012年4月24日,麻省理工学院在其官方首页报道了唐-崔瑟豪斯理论 (Tang-Dresselhaus Theory),该机构的科学家唐爽崔瑟豪斯夫人 (Mildred Dresselhaus) 在各项异性狄拉克锥方面取得突破,将引领半导体行业的芯片设计和热电能源领域。

典型的狄拉克锥材料包括石墨烯拓扑绝缘体薄膜和其他新型纳米材料[1][5][6] 这些特殊二维材料中电子的能量动量具有线性的色散关系,因此其费米能级附近的电子能带结构呈现出上下两个锥体,分别代表电子和空穴。两个锥体的顶端刚好相连,形成“零带隙”的半金属相.

狄拉克锥的名字来源于狄拉克方程,由保罗·狄拉克 (Paul Dirac) 提出,用以统一描述物质的量子力学效应和相对论效应。狄拉克锥可以是各向同性,也可是各向异性的。石墨烯中存在各向同性的狄拉克锥,由飞利浦·华莱士英语P. R. Wallace (P. R. Wallace) 于1947提出[7],并由诺贝尔物理学奖得主安德烈·海姆 (Andre Geim) 和康斯坦丁·诺沃肖洛夫 (Konstantin Novoselov) 于2005年首次在实验中观察到。[8] 麻省理工学院唐爽崔瑟豪斯夫人(Mildred Dresselhaus)于2012年在其唐-崔瑟豪斯理论 (Tang-Dresselhaus Theory) 中首次提出了系统性构建各向异性狄拉克锥的方法。[9][10][11]

描述

量子力学中,狄拉克锥描述 [12]价带和导带的能量在二维晶格k空间中,除了零维狄拉克点所在的位置外,其他任何动量的价带和导带能量都不相等。由于是锥型,电传导可以用无质量费米子电荷载流子来描述,在理论上这种情况可由相对论性的狄拉克方程来处理。 [13]无质量费米子可以导致各种奇异的量子霍尔效应、或是拓扑材料中的磁电效应和超高载流子迁移率[14] [15]在 2008-2009 年实验上使用角分辨光电子能谱(ARPES) 对钾-石墨插层化合物KC 8 [16]和几种铋基合金的狄拉克锥进行了观察。[17] [18] [15]

狄拉克锥是二维材料 (像是单层石墨烯)或拓扑绝缘体的表面态的特征。狄拉克锥在材料中是线性色散关系,由能量与晶体动量的两个分量k xk y来描述。然而,这个概念可以扩展到三维材料,其中狄拉克半金属由能量与k xk yk z的线性色散关系来定义。在动量空间中,色散关系为超圆锥体,它具有双重简并能带,也在狄拉克点相交。 [15]狄拉克半金属同时包含时间反演对称性和空间反演对称性;当其中一个对称性被破坏时,狄拉克点可以分裂成两个外尔点,材料变成外尔半金属。 [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] 在2014年,实验上利用ARPES对狄拉克半金属砷化镉 的能带结构进行了直接观测。 [30] [31] [32]

模拟系统

已在许多物理系统实现狄拉克点,例如等离子体学、声子学或纳米光子学(微腔、 [33]光子晶体[34] )。

参看

参考文献

  1. ^ 1.0 1.1 Novoselov, K.S.; Geim, A.K. The rise of graphene. Nature Materials. 2007, 6 (3): 183–191. doi:10.1038/nmat1849. 
  2. ^ Hasan, M.Z.; Kane, C.L. Topological Insulators. Rev. Mod. Phys. 2010, 82 (4): 3045. doi:10.1103/revmodphys.82.3045. 
  3. ^ Superconductors: Dirac cones come in pairs. Advanced Institute for Materials Research. wpi-aimr.tohoku.ac.jp. Research Highlights. Tohoku University. 29 Aug 2011 [2 Mar 2018]. [失效链接]
  4. ^ Basic Research Needs for Microelectronics. 页面存档备份,存于互联网档案馆) US Department of Energy, Office of Science, October 23-25, 2018.
  5. ^ Dirac cones could exist in bismuth–antimony films页面存档备份,存于互联网档案馆). Physics World, Institute of Physics, April 17, 2012.
  6. ^ Hsieh, David. A topological Dirac insulator in a quantum spin Hall phase. Nature. 2008, 452: 970–974. doi:10.1038/nature06843. 
  7. ^ Wallace, P. R. The Band Theory of Graphite. Physical Review. 1947, 71 (9): 622–634. Bibcode:1947PhRv...71..622W. doi:10.1103/PhysRev.71.622. 
  8. ^ The Nobel Prize in Physics 2010 Press Release页面存档备份,存于互联网档案馆). Nobelprize.org, October 5, 2010. Retrieved 2011-12-31.
  9. ^ New material shares many of graphene’s unusual properties. Thin films of bismuth-antimony have potential for new semiconductor chips, thermoelectric devices页面存档备份,存于互联网档案馆). MIT News Office (April 24, 2012).
  10. ^ Tang, Shuang; Dresselhaus, Mildred. Constructing Anisotropic Single-Dirac-Cones in BiSb Thin Films. Nano Letters. 2012, 12 (4): 2021–2026. doi:10.1021/nl300064d. 
  11. ^ Tang, Shuang; Dresselhaus, Mildred. Constructing A Large Variety of Dirac-Cone Materials in the BiSb Thin Film System. Nanoscale. 2012, 4 (24): 7786–7790. doi:10.1039/C2NR32436A. 
  12. ^ Fuchs, Jean-Noël; Lim, Lih-King; Montambaux, Gilles. Interband tunneling near the merging transition of Dirac cones (PDF). Physical Review A. 2012, 86 (6): 063613 [2023-01-21]. Bibcode:2012PhRvA..86f3613F. S2CID 67850936. arXiv:1210.3703 . doi:10.1103/PhysRevA.86.063613. (原始内容 (PDF)存档于2023-01-21). 
  13. ^ Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 10 Nov 2005, 438 (7065): 197–200 [2 Mar 2018]. Bibcode:2005Natur.438..197N. PMID 16281030. S2CID 3470761. arXiv:cond-mat/0509330 . doi:10.1038/nature04233. (原始内容存档于2023-05-08). 
  14. ^ Two-dimensional Dirac materials: Structure, properties, and rarity. Phys.org. [25 May 2016]. (原始内容存档于2023-01-21). 
  15. ^ 15.0 15.1 15.2 Hasan, M.Z.; Moore, J.E. Three-dimensional topological insulators. Annual Review of Condensed Matter Physics. 2011, 2: 55–78. Bibcode:2011ARCMP...2...55H. S2CID 11516573. arXiv:1011.5462 . doi:10.1146/annurev-conmatphys-062910-140432 (英语). 
  16. ^ Grüneis, A.; Attaccalite, C.; Rubio, A.; Vyalikh, D.V.; Molodtsov, S.L.; Fink, J.; et al. Angle-resolved photoemission study of the graphite intercalation compound KC8: A key to graphene. Physical Review B. 2009, 80 (7): 075431. Bibcode:2009PhRvB..80g5431G. doi:10.1103/PhysRevB.80.075431. hdl:10261/95912 . 
  17. ^ Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y.S.; Cava, R.J.; Hasan, M.Z. A topological Dirac insulator in a quantum spin Hall phase. Nature. 2008, 452 (7190): 970–974. Bibcode:2008Natur.452..970H. ISSN 0028-0836. PMID 18432240. S2CID 4402113. arXiv:0902.1356 . doi:10.1038/nature06843 (英语). 
  18. ^ Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J.H.; Meier, F.; et al. A tunable, topological insulator in the spin helical Dirac transport regime. Nature. 2009, 460 (7259): 1101–1105. Bibcode:2009Natur.460.1101H. PMID 19620959. S2CID 4369601. arXiv:1001.1590 . doi:10.1038/nature08234. 
  19. ^ Wehling, T.O.; Black-Schaffer, A.M.; Balatsky, A.V. Dirac materials. Advances in Physics. 2014, 63 (1): 1. Bibcode:2014AdPhy..63....1W. S2CID 118557449. arXiv:1405.5774 . doi:10.1080/00018732.2014.927109. 
  20. ^ Singh, Bahadur; Sharma, Ashutosh; Lin, H.; Hasan, M.Z.; Prasad, R.; Bansil, A. Topological electronic structure and Weyl semimetal in the TlBiSe2 class. Physical Review B. 2012-09-18, 86 (11): 115208. S2CID 119109505. arXiv:1209.5896 . doi:10.1103/PhysRevB.86.115208. 
  21. ^ Huang, S.-M.; Xu, S.-Y.; Belopolski, I.; Lee, C.-C.; Chang, G.; Wang, B.K.; et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nature Communications. 2015, 6: 7373. Bibcode:2015NatCo...6.7373H. PMC 4490374 . PMID 26067579. doi:10.1038/ncomms8373. 
  22. ^ Weng, Hongming; Fang, Chen; Fang, Zhong; Bernevig, B. Andrei; Dai, Xi. Weyl semimetal phase in non-centrosymmetric transition-metal monophosphides. Physical Review X. 2015, 5 (1): 011029. Bibcode:2015PhRvX...5a1029W. S2CID 15298985. arXiv:1501.00060 . doi:10.1103/PhysRevX.5.011029. 
  23. ^ Xu, S.-Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; et al. Discovery of a Weyl Fermion semimetal and topological Fermi arcs. Science. 2015, 349 (6248): 613–617 [2023-01-21]. Bibcode:2015Sci...349..613X. PMID 26184916. S2CID 206636457. arXiv:1502.03807 . doi:10.1126/science.aaa9297. (原始内容存档于2023-01-21). 
  24. ^ Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Yuan, Zhujun; Bian, Guang; Chang, Tay-Rong; et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Physics. 2015, 11 (9): 748–754 [2023-01-21]. ISSN 1745-2481. S2CID 119118252. arXiv:1504.01350 . doi:10.1038/nphys3437. (原始内容存档于2023-01-13) (英语). 
  25. ^ Huang, Xiaochun; Zhao, Lingxiao; Long, Yujia; Wang, Peipei; Chen, Dong; Yang, Zhanhai; et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3‑D Weyl semimetal TaAs. Physical Review X. 2015, 5 (3): 031023. Bibcode:2015PhRvX...5c1023H. S2CID 55929760. arXiv:1503.01304 . doi:10.1103/PhysRevX.5.031023. 
  26. ^ Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya; Yuan, Zhujun; Lin, Ziquan; Tong, Bingbing; et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nature Communications. 2016-02-25, 7 (1): 10735. ISSN 2041-1723. PMC 4773426 . PMID 26911701. doi:10.1038/ncomms10735  (英语). 
  27. ^ Schoop, Leslie M.; Ali, Mazhar N.; Straßer, Carola; Topp, Andreas; Varykhalov, Andrei; Marchenko, Dmitry; et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nature Communications. 2016, 7 (1): 11696. Bibcode:2016NatCo...711696S. ISSN 2041-1723. PMC 4895020 . PMID 27241624. arXiv:1509.00861 . doi:10.1038/ncomms11696. 
  28. ^ Neupane, M.; Belopolski, I.; Hosen, Md.M.; Sanchez, D.S.; Sankar, R.; Szlawska, M.; et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Physical Review B. 2016, 93 (20): 201104(R). ISSN 2469-9969. S2CID 118446447. arXiv:1604.00720 . doi:10.1103/PhysRevB.93.201104. 
  29. ^ Lu, Ling; Fu, Liang; Joannopoulos, John D.; Soljačic, Marin. Weyl points and line nodes in gyroid photonic crystals (PDF). Nature Photonics. 17 Mar 2013, 7 (4): 294–299 [2 Mar 2018]. Bibcode:2013NaPho...7..294L. S2CID 5144108. arXiv:1207.0478 . doi:10.1038/nphoton.2013.42. (原始内容存档 (PDF)于2023-01-21). 
  30. ^ Neupane, Madhab; Xu, Su-Yang; Sankar, Raman; Nasser, Alidoust; Bian, Guang; Liu, Chang; et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nature Communications. 2014, 5: 3786. Bibcode:2014NatCo...5.3786N. PMID 24807399. arXiv:1309.7892 . doi:10.1038/ncomms4786 . 
  31. ^ Sankar, R.; Neupane, M.; Xu, S.-Y.; Butler, C.J.; Zeljkovic, I.; Panneer Muthuselvam, I.; et al. Large single crystal growth, transport property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd3As2. Scientific Reports. 2015, 5: 12966. Bibcode:2015NatSR...512966S. PMC 4642520 . PMID 26272041. doi:10.1038/srep12966. 
  32. ^ Borisenko, Sergey; Gibson, Quinn; Evtushinsky, Danil; Zabolotnyy, Volodymyr; Büchner, Bernd; Cava, Robert J. Experimental realization of a three-dimensional Dirac semimetal. Physical Review Letters. 2014, 113 (2): 027603. Bibcode:2014PhRvL.113b7603B. ISSN 0031-9007. PMID 25062235. S2CID 19882802. arXiv:1309.7978 . doi:10.1103/PhysRevLett.113.027603. 
  33. ^ Terças, H.; Flayac, H.; Solnyshkov, D. D.; Malpuech, G. Non-Abelian Gauge Fields in Photonic Cavities and Photonic Superfluids. Physical Review Letters. 2014-02-11, 112 (6): 066402. Bibcode:2014PhRvL.112f6402T. PMID 24580697. S2CID 10674352. arXiv:1303.4286 . doi:10.1103/PhysRevLett.112.066402. 
  34. ^ He, Wen-Yu; Chan, C. T. The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry. Scientific Reports. 2015-02-02, 5 (1): 8186. ISSN 2045-2322. PMC 4650825 . PMID 25640993. doi:10.1038/srep08186 (英语).