3x3 -> 9x9
{{9x9 type square|BACKGROUND=#dfdfdf|ALIGN=right|WIDTH=20px|A00=31|A01=36|A02=29|A03=76|A04=81|A05=74|A06=13|A07=18|A08=11|A10=30|A11=32|A12=34|A13=75|A14=77|A15=79|A16=12|A17=14|A18=16|A20=35|A21=28|A22=33|A23=80|A24=73|A25=78|A26=17|A27=10|A28=15|A30=22|A31=27|A32=20|A33=40|A34=45|A35=38|A36=58|A37=63|A38=56|A40=21|A41=23|A42=25|A43=39|A44=41|A45=43|A46=57|A47=59|A48=61|A50=26|A51=19|A52=24|A53=44|A54=37|A55=42|A56=62|A57=55|A58=60|A60=67|A61=72|A62=65|A63=4|A64=9|A65=2|A66=49|A67=54|A68=47|A70=66|A71=68|A72=70|A73=3|A74=5|A75=7|A76=48|A77=50|A78=52|A80=71|A81=64|A82=69|A83=8|A84=1|A85=6|A86=53|A87=46|A88=51|C00=black|C01=black|C02=black|C03=black|C04=black|C05=black|C06=black|C07=black|C08=black|C10=black|C11=black|C12=black|C13=black|C14=black|C15=black|C16=black|C17=black|C18=black|C20=black|C21=black|C22=black|C23=black|C24=black|C25=black|C26=black|C27=black|C28=black|C30=black|C31=black|C32=black|C33=black|C34=black|C35=black|C36=black|C37=black|C38=black|C40=black|C41=black|C42=black|C43=black|C44=black|C45=black|C46=black|C47=black|C48=black|C50=black|C51=black|C52=black|C53=black|C54=black|C55=black|C56=black|C57=black|C58=black|C60=black|C61=black|C62=black|C63=blue|C64=blue|C65=blue|C66=black|C67=black|C68=black|C70=black|C71=black|C72=black|C73=blue|C74=blue|C75=blue|C76=black|C77=black|C78=black|C80=black|C81=black|C82=black|C83=blue|C84=blue|C85=blue|C86=black|C87=black|C88=black}}
'''question:''' Can you find 27 subsquares (nxn cells in n rows '''and''' n columns; values must not be consecutive) where the sum of the new diagonals, the sum of the new raws and the sum of the new columns is the identical for that particular subsquare?
generates:
31
|
36
|
29
|
76
|
81
|
74
|
13
|
18
|
11
|
30
|
32
|
34
|
75
|
77
|
79
|
12
|
14
|
16
|
35
|
28
|
33
|
80
|
73
|
78
|
17
|
10
|
15
|
22
|
27
|
20
|
40
|
45
|
38
|
58
|
63
|
56
|
21
|
23
|
25
|
39
|
41
|
43
|
57
|
59
|
61
|
26
|
19
|
24
|
44
|
37
|
42
|
62
|
55
|
60
|
67
|
72
|
65
|
4
|
9
|
2
|
49
|
54
|
47
|
66
|
68
|
70
|
3
|
5
|
7
|
48
|
50
|
52
|
71
|
64
|
69
|
8
|
1
|
6
|
53
|
46
|
51
|
|
question: Can you find 27 subsquares (nxn cells in n rows and n columns; values must not be consecutive) where the sum of the new diagonals, the sum of the new raws and the sum of the new columns is the identical for that particular subsquare?
See: Meta:User:Gangleri/tests/4x4 type square/examples – Best regards Gangleri | Th | T 22:19 2005年7月15日 (UTC)