讨论:幻方

基础条目 幻方属于维基百科数学主题的基础条目第五级。请勇于更新页面以及改进条目。
          本条目页属于下列维基专题范畴:
数学专题 (获评未评级中重要度
本条目页属于数学专题范畴,该专题旨在改善中文维基百科数学类内容。如果您有意参与,请浏览专题主页、参与讨论,并完成相应的开放性任务。
 未评级未评  根据专题质量评级标准,本条目页尚未接受评级。
   根据专题重要度评级标准,本条目已评为中重要度

3x3 -> 9x9

{{9x9 type square|BACKGROUND=#dfdfdf|ALIGN=right|WIDTH=20px|A00=31|A01=36|A02=29|A03=76|A04=81|A05=74|A06=13|A07=18|A08=11|A10=30|A11=32|A12=34|A13=75|A14=77|A15=79|A16=12|A17=14|A18=16|A20=35|A21=28|A22=33|A23=80|A24=73|A25=78|A26=17|A27=10|A28=15|A30=22|A31=27|A32=20|A33=40|A34=45|A35=38|A36=58|A37=63|A38=56|A40=21|A41=23|A42=25|A43=39|A44=41|A45=43|A46=57|A47=59|A48=61|A50=26|A51=19|A52=24|A53=44|A54=37|A55=42|A56=62|A57=55|A58=60|A60=67|A61=72|A62=65|A63=4|A64=9|A65=2|A66=49|A67=54|A68=47|A70=66|A71=68|A72=70|A73=3|A74=5|A75=7|A76=48|A77=50|A78=52|A80=71|A81=64|A82=69|A83=8|A84=1|A85=6|A86=53|A87=46|A88=51|C00=black|C01=black|C02=black|C03=black|C04=black|C05=black|C06=black|C07=black|C08=black|C10=black|C11=black|C12=black|C13=black|C14=black|C15=black|C16=black|C17=black|C18=black|C20=black|C21=black|C22=black|C23=black|C24=black|C25=black|C26=black|C27=black|C28=black|C30=black|C31=black|C32=black|C33=black|C34=black|C35=black|C36=black|C37=black|C38=black|C40=black|C41=black|C42=black|C43=black|C44=black|C45=black|C46=black|C47=black|C48=black|C50=black|C51=black|C52=black|C53=black|C54=black|C55=black|C56=black|C57=black|C58=black|C60=black|C61=black|C62=black|C63=blue|C64=blue|C65=blue|C66=black|C67=black|C68=black|C70=black|C71=black|C72=black|C73=blue|C74=blue|C75=blue|C76=black|C77=black|C78=black|C80=black|C81=black|C82=black|C83=blue|C84=blue|C85=blue|C86=black|C87=black|C88=black}}
'''question:''' Can you find 27 subsquares (nxn cells in n rows '''and''' n columns; values must not be consecutive) where the sum of the new diagonals, the sum of the new raws and the sum of the new columns is the identical for that particular subsquare?

generates:

31 36 29 76 81 74 13 18 11
30 32 34 75 77 79 12 14 16
35 28 33 80 73 78 17 10 15
22 27 20 40 45 38 58 63 56
21 23 25 39 41 43 57 59 61
26 19 24 44 37 42 62 55 60
67 72 65 4 9 2 49 54 47
66 68 70 3 5 7 48 50 52
71 64 69 8 1 6 53 46 51

question: Can you find 27 subsquares (nxn cells in n rows and n columns; values must not be consecutive) where the sum of the new diagonals, the sum of the new raws and the sum of the new columns is the identical for that particular subsquare?
See: Meta:User:Gangleri/tests/4x4 type square/examples – Best regards Gangleri | Th | T 22:19 2005年7月15日 (UTC)

返回到“幻方”页面。