传递矩阵法
传递矩阵法(英語:Transfer-matrix method)是一种在统计力学计算中使用的数学技巧。其基本思想是,对于只有相邻粒子间存在相互作用的体系,其配分函数可写作以下形式:
其中v0和vN+1是p维向量,代表边界上的粒子的状态。Wk为所谓的“传递矩阵”,矩阵元素代表相邻两粒子各种状态下相互作用的统计权重,其连乘的展开即为系统各种可能的状态统计权重之和——配分函数。如果忽略边界,或视作周期性边界,配分函数即为
“tr”为矩阵的迹。数学上,矩阵的迹等于所有特征值之和。若所有传递矩阵Wk都相同,传递矩阵的连乘即为WN,其各特征值为W矩阵各特征值λ的N次方,又因为在热力学极限下粒子数目很大,只有最大的特征值对配分函数有明显贡献:
由此,配分函数可通过求解传递矩阵的特征值精确导出。
当一个体系可以分解为一系列只有相邻元素相作用的子体系时,可考虑应用传递矩阵法。例如,三维立方伊辛模型可视作一层层二维伊辛模型的堆砌,只有相邻的子系统之间有相互作用。子系统可能的状态数是p,那么传递矩阵Wk的维度为pxp,而矩阵元素的大小与各状态的统计权重有关。
传递矩阵法是一些统计力学模型精确解的关键。例如Zimm-Bragg模型和Lifson-Roig模型解释溶液中线形高分子的螺旋-线团转变,蛋白质-DNA结合模型的传递矩阵法解,以及物理学史上著名的拉斯·昂萨格给出的二维易辛模型解析解。
参考资料
- Rodney J. Baxter. Exactly solved models in statistical mechanics. Academic Press. 1982. ISBN 0-12-083182-1.
- Teif V.B. General transfer matrix formalism to calculate DNA-protein-drug binding in gene regulation. Nucleic Acids Res. 2007, 35: e80. PMC 1920246 . PMID 17526526. doi:10.1093/nar/gkm268.