水力压裂

一种利用产生人工裂缝来达到油井增产或注水井增注(特别是低渗储层)的储层改造技术。

水力压裂(英语:fracking,另有三种英文表达方式 - hydraulic fracturing、hydrofracturing,或是hydrofracking),是种利用加压液体把基岩地层压裂的油气井激励英语well stimulation技术。过程使用高压把“压裂液”(主要是水,加上沙子,或其他混在增稠剂中的支撑剂英语fracking proppants)注入钻孔内,让岩层产生裂缝,以利其中的天然气石油卤水易于通过。当液压解除后,已经注入的小颗粒支撑剂(沙子或氧化铝等)仍能让裂缝维持通行的状态。[1]

水力压裂
北达科他州巴肯地层英语Bakken Formation地区的水力压裂作业。
类型机械式
工业部门采矿业
技术液体压力
产品天然气石油
发明者Floyd Farris, Joseph B. Clark (服务于Stanolind Oil and Gas Corporation,为目前阿莫科公司英语Amoco前身)
发明年份1947年

这种技术在1947年开始实验,[2]并于1950年完成首次商业运作。截至2012年,全球油气井中已操作过250万次“压裂作业”,而在美国境内执行的次数就超过100万次。[3][4] [5]这是种让页岩气致密气致密油煤层气井中产生足够流量的必要手段。[6]一些水力压裂缝隙可在某些矿脉岩脉中自然形成。 [7]截至2019年,美国因同时采传统钻井和利用水力压裂获得油气,而成为主要的石油出口国,[8]甲烷(一种强大的温室气体)因压裂作业而发生的泄漏也在急剧增加。[9][10]为期长达十年的水力压裂热潮,导致美国石油和天然气产量增加,产品价格下降,家庭收入中花费在能源的部分接近历史最低点。[11][12]

水力压裂法有很大的争议性。[13]支持者提倡使用这种做法,更广泛获取碳氢化合物()能产生的经济效益,[14][15]以及用天然气替代炭,因为燃烧天然气会排放较少的二氧化碳 ,(CO2),[16][17]以及国家能取得能源独立。[18]反对者英语anti-fracking movement认为水力裂解对环境的影响英语environmental impact of fracking(包括地下水地表水污染、[19]噪音空气污染、引发地震,还有对公共卫生以及环境造成危害,[20][21])远超过其能提供的好处。研究发现居住在水力压裂现场附近的人群会受到不利的健康影响,[22][23]包括已确认的化学、身体和心理社会危害,例如不良妊娠和分娩结果、偏头痛、慢性鼻窦炎、严重疲劳哮喘发作和心理压力[24]业者需要遵守法规和安全程序,以避免产生进一步的负面影响。[25]

与水力压裂相关的甲烷泄漏,其规模存有相当大的不确定性,甚至有证据显示泄漏会抵消使用天然气(相对于使用其他化石燃料)在产生较少温室气体排放的好处。例如,非营利组织环境保护基金英语Environmental Defense Fund(EDF)发布的报告把这个问题强调,重点针对在宾夕法尼亚州的业者,历经广泛的测试和分析所得的泄漏率约为10%(超过业者报告数字的5倍)。[26]这种泄漏率被认为是美国水力压裂行业的常态。EDF最近宣布要透过卫星侦测计划,以进一步确定甲烷排放点和排放量。 [27]

沿着休眠中或以前未知的断层进行水力压裂后,所增加的地震活动有时是由深层水力压裂液体返排(水力压裂钻孔的副产品)[28][29]和产生的地层卤水(压裂和非压裂的油气钻孔副产品)所造成。[28]由于前述原因,水力压裂受到国际严格检视,在一些国家受到限制,而在其他国家则完全受到禁止。[30][31] [32]欧盟正在起草法规,允许水力压裂在受控的情况下得以实施。[33]

地质

力学

由于堆叠岩层的重量和地层的胶结作用,要压裂深处的岩石,经常会受到压力的抑制。这种抑制过程在针对裂缝做“拉伸”(断裂)时会非常强大,压裂就是要克服这种抑制,而让裂缝产生。当流体压力超过有效应力英语effective stres时(主应力超过材料的拉伸强度),就能产生裂缝。[34] [35]以这种方式形成的裂缝通常在垂直于最小主应力的平面内定向,因此,钻孔中的水力裂缝可用于确定应力的方向。[36]在自然界中的例子,如岩脉或充满矿脉的裂缝,根据它们的方向可推断出过去的应力状态。[37]

矿脉

大多数矿脉系统是在相对较高的孔隙流体压力英语Pore water pressure过程中,经过反复自然压裂而成。高孔隙流体压力对矿脉系统形成过程中所产生的影响,在“裂缝-封闭”脉中尤为明显,矿脉中的物质是一系列压裂事件后的结果,每次都有额外的物质沉积。[38]长期重复自然压裂的例子譬如由地震所产生。地震让应力水平不时上升和下降,会导致大量原生水从充满流体的裂缝中排出。这个过程被称为“地震抽水”。[39]

岩脉

侵入地壳上层的小型物质,例如岩脉,形成充满流体的裂缝,在这种情况下,流体会是岩浆,而在含水量较高的沉积岩中,裂缝顶端的流体就是蒸汽。[40]

历史

前期发展

 
哈里伯顿公司在美国北达科他州巴肯地层地区的水力压裂作业。

利用压裂方式作为刺激浅层硬岩油井的方法可追溯到1860年代。当时使用硅藻土炸药硝酸甘油爆炸,以增加含油气地层中的石油和天然气产量。1865年4月24日,曾参与美国南北战争的Edward A. L. Roberts上校获得名为“鱼雷(石油钻探)英语Torpedo (petroleum)”爆裂物的专利。[41]先后在宾夕法尼亚州、纽约州肯塔基州西维吉尼亚州的油井使用,最早采用的是液体硝酸甘油,后来改用固化硝酸甘油。继而也应用在水井和气井的开采。在1930年代,有人引入酸性物质(而非爆炸方式)来刺激油井。由于酸蚀可让裂缝不会完全闭合,可进一步把油气产量提高。[42]

在20世纪的应用

哈洛德·哈姆英语Harold Hamm奥布雷·马克廉登英语Aubrey McClendon汤姆·华德英语Tom L. Ward乔治·米契英语George P. Mitchell四位先生都被认为是开发水力压裂作实际应用的先驱。[43][44]

油和气井

阿莫科公司英语Amoco前身的Stanolind Oil and Gas Corporation服务的Floyd Farris(生1911年,卒2003年)对油井生产力和压力处理之间的关系进行过研究。Stanolind Oil根据其研究,于1947年在格兰特县 (堪萨斯州)胡钩藤天然气田英语Hugoton Gas Field进行首次水力压裂实验。[6][45]测试中,把1,000美制加仑(3,800升,或830英制加仑当量)的凝胶汽油(主要是凝固汽油弹)和取自阿肯色河的沙子注入2,400英尺(730米)深的含气石灰岩地层中。那次实验因为产量没明显变化,不算很成功。在Stanolind Oil工作的J.B. Clark在1948年将这项实验的报告以论文方式发表。这项工艺在1949年获得专利,由哈里伯顿油井固井公司获得独家授权。1949年3月17日,哈里伯顿公司率先在斯蒂芬斯郡(奥克拉荷马州)英语Stephens County, Oklahoma阿彻郡 (德克萨斯州)进行两次商业水力压裂处理。[45]从那时开始,这种工艺被用在各种地质条件,以刺激油气井生产,数目达到100万口,[46]并取得良好的效果。

小型水力压裂处理与在低渗透地层做大规模水力压裂做比较,通常是用在高渗透地层,做“表皮损伤”的处理(即有时在岩石-钻孔界面处会形成低渗透带,这种压裂处理的效果仅会从钻孔壁延伸几英尺)。[47]

苏联于1952年进行首次含有支撑剂的水力压裂。随后在欧洲北非的其他国家也开始采用这种技术,包括挪威波兰捷克(1989年前)、南斯拉夫(1991年前)、匈牙利奥地利法国意大利保加利亚罗马尼亚土耳其突尼斯阿尔及利亚[48]

大规模压裂

 
一座井口英语Wellhead,压裂液经由此注入下方地层。
 
一座未连结水力压裂设备的井口。

大规模水力压裂(也称为大容量水力压裂(high-volume hydraulic fracturing))是泛美石油公司英语Pan American Petroleum and Transport Company于1968年首次在斯蒂芬斯郡 (奥克拉荷马州)采用。所谓大规模水力压裂有几种不同的定义,但一般是指一次注入150短吨(或大约300,000磅(136公吨))以上的含支撑剂液体的裂解作业。[49]

美国地质学家逐渐发现有大量渗透性过低(通常小于0.1毫达西(参见达西)的含气砂岩,无法从中做有经济效益的开采。[49]从1973年开始,在圣胡安盆地英语San Juan Basin丹佛盆地英语Denver Basin[50]皮斯斯盆地英语Piceance Basin[51]格林河 (科罗拉多河支流)盆地以及美国西部的其他硬岩层中,有数千口气井采用大规模水力压裂方式开采。其他利用大规模水力压裂方式在致密砂岩开采油气的还包括在东部的克林顿-麦地那砂岩区英语Clinton Group俄亥俄州、宾夕法尼亚州和纽约州)和棉花谷砂岩区(Cotton Valley Sandstone,在德克萨斯州和路易斯安那州)。[49]

大型水力压裂在1970年代后期迅速蔓延到加拿大西部、德国荷兰(包含陆上和海上气田)和英国北海罗特利根英语Rotliegend石炭纪含气砂岩。[48]

在1980年代后期之前,定向钻孔(非垂直钻孔)的油井或是气井并不常见。随后德克萨斯州的经营者开始在奥斯汀·楚克英语Austin Chalk 完成数千口定向钻孔的油井,并在钻孔中进行大规模滑溜水(slickwater)水力压裂处理。事实证明定向钻孔比垂直钻井技术能更有效从致密白垩中采得石油;[52]沉积层通常以接近水平方式分布,因此以平行方式(定向)钻孔可接触到更大的目标地层。[53] sedimentary beds are usually nearly horizontal, so horizontal wells have much larger contact areas with the target formation.[54]

自1990年代中期以后,水力压裂作业呈指数级成长,当时由于技术进步和天然气价格上涨,更让这种做法有经济效益。[55]

页岩

针对含油气[页岩]]采取水力压裂法至少在1965年就已发生,当时在肯塔基州东部和西维吉尼亚州南部的大珊蒂(Big Sandy)气田的一些经营者开始对俄亥俄页岩英语Ohio Shale克利夫兰页岩英语Cleveland Shale进行相对较小规模的水力压裂。压裂作业通常会增加产量,尤其是对原本产量较低的气井而言。[56]

1976年,美国政府启动东部页岩气项目(Eastern Gas Shales Project),这个项目包括许多公私合营的水力压裂示范项目。[57]同一时期,非营利机构天然气技术学研究所英语Gas Technology Institute获得联邦能源监管委员会英语Federal Energy Regulatory Commission的研究核准以及赞助。[58]

1997年,在Mitchell Energy(现隶属于德文能源公司英语Devon Energy)一位名为Nick Steinsberger的工程师采滑溜水压裂技术(这项技术使用的水量和泵压高于之前的压裂技术),用于东德州英语East Texas北部的巴涅特页岩英语Barnett Shale以开采天然气。[54]在1998年,一座名为S.H. Griffin No. 3的气井在头90天的产量超过公司以前的任何一口井。[59][60]这种新技术让巴涅特页岩的天然气开采具有广泛的经济效益,后来被应用于其他页岩之上,包括鹰津页岩英语Eagle Ford Group巴肯地层英语Bakken Formation[61][62][63]George P. Mitchell因在页岩中应用这种技术而被称为“水力压裂之父”。 [64]巴涅特页岩的第一口平行井于1991年钻探,但要等当地的垂直钻井证明利用水力压裂法具有经济价值之后,平行井才受到广泛采用。[54]

截至2013年,大规模水力压裂已在美国、加拿大和中国以商业规模方式用于页岩的油气开采。其他几个国家正计划采用这种开采技术(参阅 实施水力压裂法国家列表英语fracturing by country)。[65][66][67]

工艺

根据美国国家环境保护局 (EPA) ,水力压裂是种刺激天然气、石油或地热井最大限度提高产量的工艺。EPA的定义包含广泛,把获取水源、钻井、刺激增产和废弃物处理都包括在内。[68]

方法

水力压裂法是利用注入裂解支撑剂进入钻孔,增加目标深度处的压力(由井套管中穿孔的位置确定)以超过岩石的裂缝梯度(压力梯度)而达成。[69]裂缝梯度定义为每单位深度相对于密度的压力增加,通常以磅/平方英寸(psi)、磅/平方英尺或是为衡量单位。岩石遭到压裂后,裂解支撑剂会渗入岩层,让裂缝更为扩大。裂缝只是局部产生,因为压力会随摩擦损失率而下降,与钻孔的距离成反比。经营者通常会把支撑剂(例如沙、陶瓷或其他形式的颗粒)引入流体中来保持“裂缝宽度”,以防止在停止注入后,裂缝会因压力消除而闭合。在裂缝压力和应力更高的更深部位,维持支撑剂强度和防止支撑剂失效变得更加重要。被撑开的裂缝具有足够的渗透性,让天然气、石油、卤水和压裂支撑液流入钻孔(井)中。[69]

在此过程中,会发生压裂液泄漏(压裂液从裂缝通道中流失到周围的可渗透岩石中)。如果不加控制,泄漏量可能会超过注入量的70%,而导致地层基质损坏、地层流体不良相互作用和改变裂缝几何形状,而降低运作效率。[70]

沿钻孔长度的一个或多个裂缝由设置在钻孔侧面,利用不同方法产生的密封孔做严格控制。水力压裂是在安装有套管的钻孔中进行,通过套管的射孔英语Perforation (oil well)把压裂液注入需要压裂的区域。[71]

石油和天然气田中使用的压裂设备通常由浆料搅拌机、一个或多个高压及大容量压裂泵(通常是强大的三缸或五缸泵)和一个监控单元所组成。相关设备包括压裂罐、一个或多个用于储存和处理支撑剂的容器、高压处理器、化学添加剂装置(用于准确监测化学添加)、低压软管以及许多仪表和用于流速、流体密度和处理压力的仪表。[72][73]化学添加剂通常占总液体体积的0.5%。压裂设备在一系列压力和注入速率下运行,最高可达100兆帕(15,000psi)和每秒265升(9.4立方英尺/秒)(每分钟100桶)。[74]

油气井类型

传统的小体积水力压裂被用于增加单井中高渗透率储层的产量,而非常规的大体积水力压裂则用于致密气井和页岩气井的开采。大体积水力压裂通常需要比小体积压裂更高的压力,以促进更大量的液体和支撑剂可从钻孔向外延伸得更远。[75]

定向钻孔涉及在钻孔的尾端建有“横向(非垂直)”钻孔,与有待提取油气的岩层平行。例如在德克萨斯州的巴涅特页岩盆地,支管平行延伸1,500到5,000英尺(460到1,520米),在北达科他州的巴肯地层地区平行延伸10,000英尺(3,000米)。相较之下,一口垂直井进入同一岩层的厚度,通常仅为50-300英尺(15-91米)。平行钻孔减少地面破坏,因为仅需钻较少的井来接触相同体积的页岩。

钻井时经常会把沿着井筒壁的缝隙空间堵塞,降低钻孔处和附近的渗透率。这可减少从周围岩层进入钻孔的流量,并且把钻孔与周围岩石做部分区隔。如需恢复渗透率,可采用小体积水力压裂来解决。[76]

压裂液

 
水力压裂作业所配置的水槽。

压裂液的主要用途是扩展裂缝、提高润滑作用、改变凝胶强度以及将支撑剂携带进入地层。透过流体输送支撑剂的方法有两种 - 高速率以及高粘度。高黏度压裂往往会造成较大的显性裂缝,而高速率(滑溜水)压裂会导致较小,向外开展的微裂缝。[77]

水溶性凝胶(如关华豆胶)可增加粘度,并有效把支撑剂输送进入地层。[78]

 
拥有多组歧管的高压泵,把压裂液注入地层内。

液体通常是由水、支撑剂和化学添加剂混合而成的浆液。[79]此外,还可同时注入凝胶、泡沫和压缩气体(包括气、二氧化碳和空气)。通常的组合是90%的水,9.5%的沙,化学添加剂约占0.5%。[69][80][5]但已有使用液化石油气(LPG)和液化丙烷作为压裂液的技术。这个过程被称为无水压裂英语waterless fracking[81]

当使用液化丙烷时,它会在高压和高温下变成气体。理论上丙烷蒸气和天然气都返回地表并可收集,以及重复使用,但这种方式尚未受到广泛接受。[82]

支撑剂是种粒状材料,可防止作业产生的裂缝在压裂处理之后再闭合。支撑剂的种类包括有硅砂、树脂包覆砂、铝土矿和人造陶瓷。选择支撑剂的条件由所应对的渗透性或颗粒强度而定。在某些地层中,压力会大到连天然硅砂颗粒都被压碎,则需采用具有更高强度的支撑剂,例如铝土矿或是陶瓷。最常见的材料是硅砂,但尺寸和形状均匀的支撑剂(例如陶瓷支撑剂)被认为有更好的效果。[83]

 
美国地质调查局制作,在2011年-2014年期间水力压裂作业耗用水的图表,一立方米的水相当于264.172美制加仑。[84][85]

根据需压裂的类型、特定钻孔的条件和液体的特性而会使用不同的压裂液。压裂液可以凝胶、泡沫或滑溜水的形式当作基底,权衡后决定:较粘稠的压裂液(例如凝胶基底)较能让支撑剂处于悬浮状态;而粘性较低和摩擦力较低的压裂液(例如滑溜水),则可透过更高功率的泵输送,抵达距离钻孔更远的地方以形成裂缝。压裂液所需要的重要材料特性包括有粘度、pH值、各种流变因素等等。

压裂液是水与沙子和化学品的混合体。每次压裂会用到大约40,000加仑的化学品。 [86]典型的压裂处理会使用3到12种添加剂。[69]典型的化学添加剂(非常规压裂液有其特殊配方)有下列几种(只用一种,或是几种混使用):

  • - 在预压裂阶段会用到盐酸或是乙酸以清洁压裂液射孔,及靠近钻孔岩石中的引发裂缝。[5]
  • 氯化钠(盐)- 延缓凝胶中聚合物链的分解。[5]
  • 聚丙烯酰胺和其他减摩剂 - 用于减少液体流动湍流和管道摩擦,以利输送泵能以更高的速率泵送。 [5]
  • 乙二醇 - 防止管道中形成水垢。[5]
  • 有机硼酸 - 用于温度升高期间仍能保持流体粘度。[5]
  • 碳酸钠碳酸钾 - 用于维持不同聚合物间交叉链接的有效性。 [5]
  • 戊二醛 - 一种杀菌剂,以防止管道因微生物活动而遭到腐蚀[87]
  • 关华豆胶和其他水溶性胶凝剂 - 增加压裂液的粘度,能更有效将支撑剂输送到地层中。 [78][5]
  • 柠檬酸 - 作防腐蚀之用。
  • 异丙醇 - 让化学品适于低温环境,不致在冬天结冰。[5]

在2005年-2009年之间,美国在水力压裂最常用的化学品是甲醇,而其他受广泛使用的化学品是异丙醇、乙二醇单丁醚和乙二醇。[88]

典型的压裂液种类有:

  • 传统线性凝胶。这些凝胶是纤维素衍生物,与其他化学品混合。[89]
  • 硼酸盐交叉链接凝胶液。这类是关华豆胶与离子(由硼砂/硼酸水溶液生成)交叉链接的液体。这类凝胶在pH值9或更高时具有更高的粘度,用于携带支撑剂。压裂作业后,pH值会降至3-4,让交叉链接键断裂,粘度降低,易于泵出。
  • 有机金属交叉链接液 - 盐 - 已知会与关华豆胶发生交叉链接。但此交叉链接不可逆转,一旦这种压裂液把支撑剂泵入后,待压裂完成,需另外使用适当的破胶剂把交叉链接分解。[90][78]
  • 磷酸铝酯油凝胶。把磷酸铝油混合浆液,以形成交叉链接凝胶。这类是种最早即有的胶凝种类。

使用滑溜水液体做高速扫掠是常见的做法。扫掠可暂时降低支撑剂浓度,有助于确保钻孔不被支撑剂阻塞。[91]在压裂过程进行中,有时会在压裂液中加入降粘剂(如氧化剂降链接剂),以促使胶凝剂失活并促进回流。[78]这种氧化剂与凝胶反应,将其分解,降低液体粘度并确保无支撑剂从地层中流失。酶充当分解凝胶的催化剂。在作业期间需要pH值缓冲系统来维持粘性,而有时在水力压裂作业结束时,会使用pH值调节剂把交叉链接分解。[91]在作业结束后,通常会使用加压水冲洗钻孔(有时会添加可降低摩擦的化学物质)。注入的液体可被回收一部分(并非全部)。对液体的管理方法有多种,包括地下注入、处理、排放、回收的控制和临时储存在坑或容器中。新技术不断发展,以便能更好处理废水,并提高可重复使用的可能。[69]

压裂监测

监测水力压裂处理的最常见和最简单的方法是在了解液体特性,以及注入支撑剂的情况下,测量水力压裂生成过程中的压力和速率。这些数据,再加上对于地层的地质知识,可用于模拟产生裂缝的长度、宽度和导流率等信息。[69]

放射性同位素监测

有时会在压裂液中加上放射性示踪剂后一同注入,以确定注入剖面和已形成裂缝的位置。[92]选择放射性示踪剂时应挑选具有易于检测到的辐射、适当的化学性质以及适当的半衰期和毒性水准,能在最大限度内减少初始和残留的污染。[92]也可注入可与玻璃(沙子)和/或树脂珠化学键合的放射性同位素以追踪压裂结果。[93]

有新的钻孔监测新技术,涉及套管外装置的光纤电缆。使用光纤,可以沿钻孔测量每英尺的温度 - 即使在钻孔处于压裂和抽取油气时也是如此。工程师透过监测钻孔的温度,可确定在压裂期间,钻孔不同部分使用的压裂液数量,以及钻孔开始生产时,可收集多少天然气或石油。[94]

微地震监测

对于更高级的应用,有时使用微地震英语microseism监测来估计诱发裂缝的大小和方向。通过在附近的井筒中放置一组地震检波器来测量微地震活动。通过绘制与裂缝扩大相关的任何小地震事件的位置,可以推断出裂缝的大致几何形状。部署在地面或钻孔下的倾斜仪英语tiltmeter阵列也提供另一种监测应力变化的技术。[95]

平行完井

自2000年代初以来,钻井和完井技术的进步已经让平行钻孔技术更能经济的达成。[96]平行钻孔与传统的垂直钻孔相比,可接触更大面积的地层。尤其是针对不具有足够渗透率的页岩地层,当采用垂直钻孔无法产生经济利益的时候,平行钻孔的效果会更好。如今在陆上钻孔时,通常会分多个阶段进行水力压裂,尤其是在北美。当确定地层需要被压裂的次数,以及在钻孔的哪些位置进行之后,即会钻掘适当的完井来进行。[97]

 
压力管套筒

用途

水力压裂用于提高由地下天然储层中开采如石油或天然气等的速度。这类储层通常是多孔的砂岩石灰岩白云岩,但也包括“非常规储层”,例如页岩或是煤层。水力压裂让人类能从地表下深处(通常为2,000-6,000米(5,000-20,000英尺))的岩层中开采天然气和石油,这种深度远深于典型的地下水储层。在这样的深度,并无足够的渗透率或储层压力,迫使天然气和石油从岩石流入钻孔,让业者获得经济利益。因此在岩石中形成导流裂缝后,有助于从这类页岩储层中开采油气的工作。这类储层的渗透率是在微米达西到奈米达西的范围内。[98]造成裂缝,可把较大体积的储层连接到钻孔。所谓的“超级水力压裂”是在岩层中产生更深的裂缝,以释放更多的石油和天然气,提高采收效率。[99]典型页岩钻孔的产量通常在开始一两年后下降,但一口井的峰值生产寿命可延长达几十年。[100]

非开采石油/天然气用途

虽然水力压裂的主要用途是刺激油气井的生产,[101][102][103]但这种方法也被应用到:

  • 刺激地下水井水量[104]
  • 预置或诱发矿石塌方,以利采矿[105]
  • 作为加强废弃物整治的手段,通常是针对碳氢化合物废弃物或溢出物[106]
  • 透过注入岩层深处的方式来处置废弃物[107]
  • 测量地球压力[108]
  • 取得热能,供增强型地热系统发电之用[109][63]
  • 在二氧化碳地质封存作业中(参见碳捕集与封存)提高注入速度[110]
  • 储存水于地底深处,并定期利用地层压力迫使其回流,推动发电机以产生电力[111]

自1970年代后期以来,一些国家(包括美国、澳大利亚南非)有利用水力压裂来增加井中饮用水产量的案例。[112][113][114]

经济效益

 
非常规石油与天然气的生产成本经常持续超过售价。

水力压裂已被视为是种开采非常规石油非常规天然气英语unconventional gas的关键方法。根据国际能源署估计,全球技术上可开采的页岩气数量为208兆立方米(7,300 兆立方英尺),致密气为76兆立方米(2,700兆立方英尺),煤层气为47兆立方米(1,700兆立方英尺)。蕴藏这些资源地层的渗透率通常低于常规气层。因此对于特殊的地质,就需用到如水力压裂的特定技术。虽说还有其他方法可开采这些资源,例如常规钻井或平行钻井,但水力压裂是让开采能产生经济利益的关键技术。多级压裂技术促进美国页岩气和轻质致密油生产的发展,相信在其他的国家也是如此。[14]

绝大多数研究显示到目前为止,美国的水力压裂已经产生强大的经济效益。[115]布鲁金斯学会估计,仅页岩气的效益就达到每年480亿美元,由于天然气价格显著下降,受益者大部分是消费者和工业部门。[116]其他研究则显示水力压裂的外部性因素产生的成本高于经济效益,反而是耗用较少碳和水资源的能源,其均化能源成本 (LCOE) 会较水力压裂者为低。[117]

利用水力压裂开采油气的主要好处是抵消天然气和石油的进口,否则就得支付给国外生产者。[118]然而,页岩油和天然气在美国受到高度补贴,远高于厂商的生产成本[119] - 这表示水力压裂的成本是由人民缴纳的所得税负担,在许多情况下,金额是厂商生产成本的两倍。[120]

研究显示水力压裂钻孔对井附近的农业生产力有不利影响。[121]一篇论文揭露,“在生产乡镇半径11-20公里范围内的农业活跃月份,如有钻井活动,依赖灌溉生产的作物生产力会降低5.7%。乡镇和钻井之间距离越远,不利的影响会逐渐降低。 ”[121]调查结果暗示加拿大艾伯塔省因当地有水力压裂活动,造成农作物产量下降,年度损失达到1,480万加币[121]

美国能源信息署估计到2035年,美国45%的天然气用量将来自页岩气(其中绝大多数将取代温室气体排放量较低的常规天然气)。[122]

公开辩论

 
西班牙阿拉瓦省省会维多利亚的反水力压裂海报(2012年)。
 
反抗灭绝(环保运动)中的反水力压裂标语牌。(2018年)

政治与公共政策

民众运动和民间社会组织

在国际环境组织(参见环境组织名录)和国家(如法国)的参与下,国际上出现反对水力压裂运动,而在受影响地区,如在英国西萨塞克斯郡波康比英语Balcomb也在2013年发生反对在波康比做水力压裂活动英语Balcombe drilling protest,迄2021年为止,当地尚未有试验钻探被核准。[123] [124]美国地方乡镇强烈反对水力压裂活动的态度,导致业者采取各种公共关系措施来安抚公众,包括聘用受过心理战训练的退役军事人员。据一家名为Range Resources英语Range Resources的公关总监Matt Pitzarella称,在处理情绪激动的乡镇会议和就分区和处理水力压裂的地方条例向乡镇提供建议时,在中东受过这类训练的公司员工,处理Range Resources位于宾夕法尼亚州的事务时就能提供良好的帮助。[125][126]

美国有许多针对水力压裂的抗议活动。例如在2013年,俄亥俄州新马塔莫拉斯英语New Matamoras附近的抗议活动中,有10人因非法进入开采区,并把自己锁在钻井设备而遭逮捕。 [127]在宾夕法尼亚州西北部,一个钻井现场发生有人驾车经过,并朝朝钻井平台方向射击两发小口径步枪子弹,在大喊脏话后逃离现场。[128]华盛顿县 (宾夕法尼亚州),一名天然气管道承包商发现在预定建造管道处被人放置一具管状炸弹,地方当局表示,如果这炸弹没被发现并被引爆的话,会造成“灾难”。[129]

美国政府和企业游说

美国国务院制定一项全球页岩气倡议(Global Shale Gas Initiative),以说服世界各国政府允许石油巨头在当地从事水力压裂业务。根据[维基解密]]所公布的一份美国外交电报文件(参见维基解密泄露美国外交电报事件)显示美国官员们为外国政府官员举行会议,会中由石油巨头代表和公共关系专业人士就安抚目标国家,对水力压裂怀有敌意的人民进行专题介绍。美国政府的努力最终获得成功,因为几大洲上的许多国家都有同意给予水力压裂特许权的想法;例如波兰同意允许它们在其近3分之1的领土上进行水力压裂作业。[130]美国政府所属的美国进出口银行从2010年以来为在澳大利亚昆士兰州建立水力压裂业务,已经对该国提供47亿美元的资金。[131]

俄罗斯在背后怂恿的传闻

一些欧洲官员在2014年表示,欧洲反对水力压裂的几场主要抗议活动(已在立陶宛乌克兰取得不同程度的成功)可能部分由俄罗斯天然气工业股份公司(Gazprom)所赞助。 《纽约时报》表示,俄罗斯将其对欧洲出口的天然气视为该国地缘政治影响力的一个关键因素,东欧当地有大量的页岩气储量,如果进行水力压裂,俄罗斯天然气市场会因而减少。俄罗斯官员曾多次公开声明,水力压裂“将会造成巨大的环境问题”。[132]

目前美国进行的作业

目前美国的阿肯色州、加利福尼亚州、科罗拉多州、路易斯安那州、北达科他州、俄克拉荷马州、宾夕法尼亚州、德克萨斯州、维吉尼亚州西维吉尼亚州和怀俄明州均有进行中的水力压裂作业。其他几州,如阿拉巴马州印第安纳州密歇根州密西西比州新泽西州、纽约州和俄亥俄州,正考虑或准备使用这种方法开采。马里兰州[133]佛蒙特州已永久禁止水力压裂,纽约州和北卡罗来纳州已制定临时禁令。新泽西州自2011年起有为期1年的暂停水力压裂令,历经波折,迄2019年,虽有争议,但该州尚无水力压裂活动。[134]虽然英国最近解除水力压裂暂停令,但由于担心地震和钻井对环境的影响,政府行事十分谨慎。法国和保加利亚目前禁止水力压裂。[55]

纪录影片

美国导演乔什·福克斯英语Josh Fox在2010年奥斯卡奖中受提名的电影 -《天然气之地英语Gasland》(Gasland)[135]成为一个反水力压裂页岩的代表。这部电影展示宾夕法尼亚州、怀俄明州和科罗拉多州钻井现场附近的地下水污染问题。[136]石油和天然气行业游说团体 “Energy in Depth ”认为这部电影所述与事实不符。[137]而Gasland的网站上针对“Energy in Depth ”所谓不符事实予以反驳。[138]埃克森美孚雪佛龙康菲公司在2011年和2012年播放广告,描述天然气对经济和环境的效益,并认为水力压裂是安全的。[139]

2012年的电影《心灵勇气》反对水力压裂技术。[140]天然气行业采用传单、TwitterFacebook发文针对批评予以反驳。[139]

2013年1月,北爱尔兰记者和电影制片人Phelim McAleer英语Ann McElhinney and Phelim McAleer经由群众募资[141]制作一部名为FrackNation英语FrackNation的纪录片,作为对福克斯为天然气之地发表反对意见的支持,声称它“讲述关于水力压裂生产天然气的真相”。 FrackNation在马克·库班有线电视AXS TV英语AXS TV节目上首播,《心灵勇气》也在此时发行。[142]

2013年4月,乔什·福克斯发布《Gasland 2》,描述其“国际冒险之旅,揭开与水力压裂有关的一系列秘密、谎言和污染”。影片对天然气行业把天然气视为石油的清洁和安全替代品的神话提出挑战,钻孔经过水力压裂,随着时间的推移会不可避免地发生泄漏,而污染水源和空气、伤害家庭,并会释放甲烷(强效温室气体)危及地球的气候。

2014年,网络影视公司Video Innovations的Scott Cannon发布名为《The Ethics of Fracking(水力压裂的伦理)》的纪录片。这部影片涵盖关于水力压裂的政治、心灵、科学、医学和专业观点。它还深入探讨天然气行业在广告中描绘水力压裂的真相。[143]

2015年,加拿大纪录片《压裂的土地英语Fractured Land》在Hot Docs加拿大国际纪录片节英语Hot Docs Canadian International Documentary Festival做全球首映。[144]

与研究报告相关问题

支持研究报告的经费来源通常是争议的焦点。人们对由基金会和公司,或是环保组织所赞助的研究报告表达担忧,这类报告有时会引用至少看来像是不可靠的研究。[145][146]一些组织、研究人员和媒体机构报告说,由于业者[147]和政府的压力,[30]让他们难以从事和报告研究的结果,并表达对环境报告受到审查的担忧。[147][148][149]一些人认为需要对这种技术对环境和健康产生的影响进行更多的研究。[150][151] [152][153]

健康风险

 
支持清洁能源游行中的反水力压裂标语布条(美国费城,2016年)[154]

人们担心水力压裂活动会对公共卫生造成不利影响。[150]一项在2013年对美国页岩气生产所做的审查指出,“随着钻探地点的增加,有越来越多的人面临事故和接触作业中使用有害物质的风险。”[155]一份在2011年的危害评估,建议全面披露用于水力压裂和钻井的化学物质,因为它们对健康会发生直接影响,许多可能是长期的影响。[156]

2014年6月,英国卫生及社会关怀部所属的公共卫生署英语Public Health England根据对已采用水力压裂的国家的文献和数据的审查,发表一篇关于英国页岩气开采过程,当地人暴露于化学和放射性污染物而对公共卫生的潜在影响的综述。[151]这份报告在执行摘要中指出:“对目前已有证据的评估显示,如果作业和监管正确运作,暴露于相关的排放物,而造成的潜在健康风险将会很低。大多数证据显示,地下水污染最有可能是由垂直钻孔泄漏所引起,地下水力压裂过程本身(即页岩的压裂)对地下水污染的可能性不大。但水力压裂液或废水在地表的泄漏有影响地下水的可能,而气体排放也有可能影响健康。在文献中所确定的潜在风险,通常是由于运作不正确和环境监管不佳所造成。”[151]:iii

一份在2012年为欧盟环境总局(European Union Directorate-General for the Environment )准备的报告,确定水力压裂造成的空气污染和地下水污染对人类的潜在风险,[157]而引发在2014年的一系列建议,以缓解这些担忧。[158][159]2012年美国儿科护士指南称,水力压裂对公共健康有潜在的负面影响,儿科护士应做好收集有关此类主题信息的准备,用以倡导改善社区健康。[160]

美国经济评论》在2017年所做的一项研究发现,“在社区供水系统入口1公里范围内增加钻井作业,社区饮用水中就会增加与页岩气相关的污染物。”[161]

哈佛公共卫生学院英语Harvard T.H. Chan School of Public Health在2022年所做的研究,其结果发表在期刊自然能源英语Nature Energy,称生活在非常规石油和天然气开发 (UOGD) 附近或下风向的老年人(涉及包括水力压裂在内的开采方法),他们早死的风险较不住在类似环境的老年人为高。[162]

美国疾病管制与预防中心(CDC)根据美国劳工部收集的资料做分析,显示钻探活动与职业伤害相关的机动车辆事故、爆炸、跌倒和火灾数量之间存在相关性。[163]采掘工人也有罹患肺部疾病的风险,包括肺癌矽肺(后者是由于暴露于岩石钻探和沙子处理时产生的二氧化硅粉尘的后果)。[164]美国国家职业安全卫生研究所 (NIOSH) 确定从事一些水力压裂作业的工人,由于暴露于空气中的二氧化硅,会对健康构成危害。[165]NIOSH和美国职业安全与健康局英语Occupational Safety and Health Administration(OSHA)于2012年6月就这项主题发布联合危险警报。[165]

此外,压裂作业的工作人员面临增高的辐射暴露风险。因为这种作业通常需要钻入含有天然放射性物质英语naturally occurring radioactive material (NORM) 例如的岩石。[166][167]

由《加拿大医学协会期刊英语Canadian Medical Journal》刊出的报告称,他们经过研究已确定55种可能导致癌症的因素,其中20种显示会增加罹患白血病淋巴瘤的风险。耶鲁大学公共卫生学院英语Yale School of Public Health提供的分析警告说,生活在压裂作业区一英里范围内的数百万人可能已经接触过这类化学物质。[168]

环境影响

水力压裂对环境的影响
 
利用水力压裂开采页岩气示意图
类型机械式
工业部门采矿业
技术液体压力
产品天然气及石油
发明者Floyd Farris, Joseph B. Clark
发明年份1947年
 
澳大利亚爱丽斯泉举行的2019年9月气候罢课,其中的反水力压裂标语牌。

水力压裂对环境的潜在影响包括气体排放和气候变化、大量耗水、地下水污染、土地利用改变、地震风险、噪声污染以及对人类的各种健康影响。[169]空气排放主要是从井中逸出的甲烷,以及采收设备的工业排放物。[157]欧盟国家的旧井与依据最近的欧盟立法规定所钻取的油气井相比,会逸出更多的甲烷,是个大问题。[157]

2016年12月,EPA发布《油气水力压裂:水力压裂水循环对美国饮用水资源的影响(最终报告)》。 EPA掌握科学证据,显示水力压裂活动会影响饮用水资源。[170]根据EPA,饮用水会受到污染的几个主要原因是:

  • 在缺水的地方,或当地缺水的时段使用水资源作压裂作业[170]
  • 处理压裂液和化学品时发生泄漏,导致大量或高浓度的化学品进入地下水[170]
  • 机械操作不当而把压裂液注入井中,导致气体或液体进入地下水[170]
  • 将压裂液直接注入地下水中[170]
  • 水力压裂废水泄漏到地表水中[170]
  • 把水力压裂废水弃置或是储存在无衬里的坑中,会导致地下水的污染。[170]

每口要做水力压裂的井需要用到120至350万美制加仑(4,500至 13,200立方米)的水,大型项目使用的多达500万美制加仑(19,000立方米)。[171]当同一口井需要重新压裂时,就需使用额外的水。[78][172]一口井在其生命周期内平均需要300到800万美制加仑(11,000到30,000立方米)的水。[69]根据隶属牛津大学牛津能源研究所英语Oxford Institute for Energy Studies的数据,欧洲因为当地页岩深度平均是美国的1.5倍,而需要用到更多的压裂液。[173]地表水可能会因溢出,以及建造和维护不当的废弃物坑而受到污染,[174]从压裂的地层中逸出(例如经过废弃的钻孔、裂缝和断层[175])的液体,或采出水英语produced water(回流或是钻孔产生的流体,其中含有如矿物质和盐的溶解物)也会污染地下水。盐水和压裂液从废弃的钻孔泄漏而污染地下水的可能性很低。[176][151]采出水可透过注入不透水的地下层、利用市政和商业废水处理和排放以及油井或油田的自给式系统循环处理,作未来压裂之用。[177]用于压裂地层后的采出水,能被回收的通常不会超过一半。[178]

在美国,有超过1,200万英亩的土地用于水力压裂以开采油气,相当于6个黄石国家公园的面积。每个钻孔平台英语drill floor需要大约3.6公顷(8.9英亩)的土地,以安装设备。[179]平台和支撑结构严重破坏地面景观,会对野生动物产生负面的影响。[180]这些场地在油气蕴藏耗尽后必须尽快进行复原。[157]研究显示这些已对美国生态系统服务(即自然界为人类提供的功效)产生每年超过2.5亿美元的成本。[181]在准备和进行水力压裂过程中,每个钻井平台(平均每平台有10口井)会产生大约800至2,500天的嘈杂,而对当地居民与野生动物造成影响。此外,压力作业需持续利用到卡车(如运输沙子之用等),也会产生噪音。[157]目前正在进行研究以确定人类健康是否受到空气和水污染的影响,并且作业时需要严格遵守安全程序和法规,以避免伤害并管理可能产生事故的风险。[151]

2013年7月,联邦铁路总署把水力压裂化学品列为让油罐车发生腐蚀的“可能原因”,由于油罐车锈蚀,会有造成油污染的可能。[182]

水力压裂有时与人工地震或是一般地震有关。[183]这些事件的规模通常太小而无法在地表检测到,但由于流体注入地层而引起的震颤已经够大,以至于人们经常能感觉到,并会造成财产损失和可能的伤害。[28][184][185][186][187][188]]一份美国地质调查局报告称,在几个州内涉及到790万人,将面临与加利福尼亚州相似的地震风险,其中水力压裂和类似做法是主要的因素。[189]

微地震通常用来绘制压裂的水平和垂直涵盖范围。[95]更深入了解被压裂和用于注入井区域的地质情况,有助于减轻发生重大地震事件的可能性。[190]

人们从地表水(包括河流和水库)或是地下含水层中(可通过公共或私人水井)取得饮用水。已经有许多记录在案的情况,社区附近的地下水受压裂活动污染,让拥有私人水井的居民被要求从外部取得饮用水和日常生活用水。[191][192]

含氟表面活性剂(简称为“PFAS”或称为“永久化学品”),与癌症和出生缺陷有关联。用于压裂的化学品留在环境中,它们最终会分解成PFAS。这些化学品可从钻孔现场流入地下水中。PFAS能从储存数百万加仑的废水池渗漏到地下水中。[193]

虽然有这些健康问题,并持续有人努力设法暂停水力压裂,留待更清楚了解其环境和健康影响后再进行,美国目前仍严重依赖化石燃料能源。美国在2017年消耗的能源中,有37%来自石油、29%来自天然气、14%来自煤炭、9%来自核能,只有11%来自可再生能源(如风能太阳能)。[194]

法规

使用或考虑使用水力压裂的国家已经实施不同的法规,包括制定联邦和地区立法,以及对当地土地使用分区予以限制。[195][196]法国在2011年因公众压力,本着预防原则以及对环境危害采取预防和纠正行动的原则,成为第一个禁止水力压裂的国家。[31][197][198][199]法国宪法委员会在2013年10月的一项裁决将这项禁令维持。[200]苏格兰和其他一些国家由于公共卫生问题和公众强烈反对,暂时停止水力压裂活动。[201]英格兰南非等已经解除禁令,选择的是专注在监管而非彻底禁止。[202][203]德国已发布法规草案,允许使用水力压裂开采页岩气矿床,但湿地除外。[204]中国,页岩气监管仍面临障碍,因为它与其他监管制度,尤其是贸易存在复杂的相互关系,有法律顾问机构提醒任何对在当地开采有兴趣的外国投资人应给予特别的注意。[205]澳大利亚的许多州已永久或暂时禁止透过压裂开采碳氢化合物。[206]英国在2019年禁止水力压裂。[207]

欧盟通过一项关于使用大容量水力压裂的最低原则的建议。[33]其监管制度要求全面披露所使用的添加剂。[208]美国非营利组织"地下水保护委员会(Ground Water Protection Council )"[209]推出网址FracFocus.org,这是个水力压裂液在线自愿披露数据库,由石油和天然气贸易组织和美国能源部资助。[210][211]水力压裂并不包括在《安全饮用水法英语Safe Drinking Water Act》的地下注入控制规定之中,但如果使用到柴油,则须受控制。EPA确保在颁发使用到柴油的压裂钻井许可时,会进行监督。[212] 2012年,佛蒙特州成为美国第一个禁止水力压裂的州。2014年12月17日,纽约州因水力压裂对人类健康和环境有潜在风险,成为第二个完全禁止这种做法的州。[213][214][215]

参见

参考文献

  1. ^ Gandossi, Luca; Von Estorff, Ulrik. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production – Update 2015 (PDF). Scientific and Technical Research Reports (报告) (Joint Research Centre of the European Commission; Publications Office of the European Union). 2015 [2016-05-31]. ISBN 978-92-79-53894-0. ISSN 1831-9424. doi:10.2790/379646. (原始内容存档于2020-11-07). 
  2. ^ Suchy, Daniel R.; Newell, K.David. Kansas Geological Survey, Public Information Circular (PIC) 32. Kansas Geological Survey. 2012-05-15 [2021-10-08]. 
  3. ^ King, George E, Hydraulic fracturing 101 (PDF), Society of Petroleum Engineers, 2012 [2023-03-22], SPE 152596, (原始内容存档 (PDF)于2021-02-05) –通过Kansas Geological Survey 
  4. ^ Staff. State by state maps of hydraulic fracturing in US.. Fractracker.org. [2013-10-19]. (原始内容存档于2013-10-20). 
  5. ^ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 Freeing Up Energy. Hydraulic Fracturing: Unlocking America's Natural Gas Resources (PDF). American Petroleum Institute. 2010-07-19 [2012-12-29]. (原始内容 (PDF)存档于2012-11-13). 
  6. ^ 6.0 6.1 Charlez, Philippe A. Rock Mechanics: Petroleum Applications. Paris: Editions Technip. 1997: 239 [2012-05-14]. ISBN 9782710805861. 
  7. ^ Blundell D. Processes of tectonism, magmatism and mineralization: Lessons from Europe 27. 2005: 340. ISBN 9780444522337. doi:10.1016/j.oregeorev.2005.07.003.  |journal=被忽略 (帮助); |issue=被忽略 (帮助)
  8. ^ Clifford Krauss. The 'Monster' Texas Oil Field That Made the U.S. a Star in the World Market. The New York Times. 2019-02-03 [2019-09-21]. (原始内容存档于2021-01-04). The shale-drilling frenzy in the Permian has enabled the United States not only to reduce crude-oil imports, but even to become a major exporter [...] New technologies for drilling and hydraulic fracturing helped bring the break-even price 
  9. ^ Umair Irfan. The best case for and against a fracing ban. Vox. 2019-09-13 [2019-09-21]. (原始内容存档于2020-01-01). During much of the fracing boom, the US economy grew and emissions declined. One study found that between 2005 and 2012, fracing created 725,000 jobs. That’s largely due to natural gas from fracing displacing coal in electricity production. 
  10. ^ Fracking fluid is leaking more often than we thought. Popular Science. 2017-02-24 [2022-09-22] (美国英语). 
  11. ^ Rebecca Elliott; Luis Santiago. A Decade in Which Fracking Rocked the Oil World. The Wall Street Journal. 2019-12-17 [2019-12-20]. (原始内容存档于2021-01-23). ... hydraulic fracturing techniques spurred a historic U.S. production boom during the decade that has driven down consumer prices, buoyed the national economy and reshaped geopolitics. 
  12. ^ 2019 Sustainable Energy in America Factbook (PDF). Bloomberg New Energy Finance. [2020-04-28]. (原始内容存档 (PDF)于2020-08-01). 
  13. ^ Urbina, Ian. Drilling Down. The New York Times. [2023-03-22]. (原始内容存档于2021-02-05). 
  14. ^ 14.0 14.1 IEA. Golden Rules for a Golden Age of Gas. World Energy Outlook Special Report on Unconventional Gas (PDF). OECD. 2012-05-29: 18–27 [2023-03-22]. (原始内容 (PDF)存档于2018-05-17). 
  15. ^ Hillard Huntington et al. EMF 26: Changing the Game? Emissions and Market Implications of New Natural Gas Supplies页面存档备份,存于互联网档案馆) Report. Stanford University. Energy Modeling Forum, 2013.
  16. ^ What is fracking and why is it controversial?. BBC News. 2018-10-15 [2023-03-22]. (原始内容存档于2021-02-05). 
  17. ^ Cost and performance baseline for fossil energy plants, Volume 1: Bituminous coal and natural gas to electricity (PDF). National Energy Technology Laboratory (NETL), United States Department of Energy. November 2010 [2019-08-15]. (原始内容 (PDF)存档于2014-01-24). 
  18. ^ The Fracking Industry Deserves Our Gratitude. National Review. 2017-07-05 [2022-10-26] (美国英语). 
  19. ^ Fischetti, Mark. Groundwater Contamination May End the Gas-Fracking Boom. Scientific American 309 (3). 2013-08-20 [2023-03-22]. (原始内容存档于2021-02-06). 
  20. ^ Brown, Valerie J. Industry Issues: Putting the Heat on Gas. Environmental Health Perspectives. February 2007, 115 (2): A76. PMC 1817691 . PMID 17384744. doi:10.1289/ehp.115-a76. 
  21. ^ V. J. Brown. Radionuclides in Fracking Wastewater: Managing a Toxic Blend. Environmental Health Perspectives. February 2014, 122 (2): A50–A55. PMC 3915249 . PMID 24486733. doi:10.1289/ehp.122-A50. 
  22. ^ Bamber, AM; Hasanali, SH; Nair, AS; Watkins, SM; Vigil, DI; Van Dyke, M; McMullin, TS; Richardson, K. A Systematic Review of the Epidemiologic Literature Assessing Health Outcomes in Populations Living near Oil and Natural Gas Operations: Study Quality and Future Recommendations.. International Journal of Environmental Research and Public Health. 2019-06-15, 16 (12): 2123. PMC 6616936 . PMID 31208070. doi:10.3390/ijerph16122123 . 
  23. ^ Wright, R; Muma, RD. High-Volume Hydraulic Fracturing and Human Health Outcomes: A Scoping Review.. Journal of Occupational and Environmental Medicine. May 2018, 60 (5): 424–429 [2019-11-25]. PMID 29370009. S2CID 13653132. doi:10.1097/JOM.0000000000001278. (原始内容存档于2020-08-01). 
  24. ^ Gorski, Irena; Schwartz, Brian S. Environmental Health Concerns From Unconventional Natural Gas Development. Oxford Research Encyclopedia of Global Public Health. 2019-02-25 [2020-02-20]. ISBN 9780190632366. doi:10.1093/acrefore/9780190632366.013.44. (原始内容存档于2020-12-14) (英语). 
  25. ^ Costa, D; Jesus, J; Branco, D; Danko, A; Fiúza, A. Extensive review of shale gas environmental impacts from scientific literature (2010-2015).. Environmental Science and Pollution Research International. June 2017, 24 (17): 14579–14594 [2023-03-22]. PMID 28452035. S2CID 36554832. doi:10.1007/s11356-017-8970-0. (原始内容存档于2020-08-08). 
  26. ^ Pennsylvania Oil and Gas Emissions Data: Highlights & Analysis. edf.org. Environmental Defense Fund. [2018-05-02]. (原始内容存档于2021-02-05). 
  27. ^ EDF Announces Satellite Mission to Locate and Measure Methane Emissions. edf.org. Environmental Defense Fund. [2018-05-02]. (原始内容存档于2021-02-05). 
  28. ^ 28.0 28.1 28.2 Kim, Won-Young 'Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio'页面存档备份,存于互联网档案馆), Journal of Geophysical Research-Solid Earth
  29. ^ US Geological Survey, Produced water, overview页面存档备份,存于互联网档案馆), accessed 2014-11-08.
  30. ^ 30.0 30.1 Jared Metzker. Govt, Energy Industry Accused of Suppressing Fracking Dangers. Inter Press Service. 2013-08-07 [2013-12-28]. (原始内容存档于2021-02-05). 
  31. ^ 31.0 31.1 Patel, Tara. The French Public Says No to 'Le Fracking'. Bloomberg Businessweek. 2011-03-31 [2012-02-22]. (原始内容存档于2015-01-19). 
  32. ^ Patel, Tara. France to Keep Fracking Ban to Protect Environment, Sarkozy Says. Bloomberg Businessweek. 2011-10-04 [2012-02-22]. (原始内容存档于2014-08-25). 
  33. ^ 33.0 33.1 Commission recommendation on minimum principles for the exploration and production of hydrocarbons (such as shale gas) using high-volume hydraulic fracturing (2014/70/EU). Official Journal of the European Union. 2014-01-22 [2014-03-13]. (原始内容存档于2020-08-19). 
  34. ^ Fjaer, E. Mechanics of hydraulic fracturing. Petroleum related rock mechanics. Developments in petroleum science 2nd. Elsevier. 2008: 369 [2012-05-14]. ISBN 978-0-444-50260-5. 
  35. ^ Price, N. J.; Cosgrove, J. W. Analysis of geological structures. Cambridge University Press. 1990: 30–33 [2011-11-05]. ISBN 978-0-521-31958-4. 
  36. ^ Manthei, G.; Eisenblätter, J.; Kamlot, P. Stress measurement in salt mines using a special hydraulic fracturing borehole tool (PDF). Natau, Fecker & Pimentel (编). Geotechnical Measurements and Modelling. 2003: 355–360 [2012-03-06]. ISBN 978-90-5809-603-6. 
  37. ^ Zoback, M.D. Reservoir geomechanics. Cambridge University Press. 2007: 18 [2012-03-06]. ISBN 9780521146197. 
  38. ^ Laubach, S. E.; Reed, R. M.; Olson, J. E.; Lander, R. H.; Bonnell, L. M. Coevolution of crack-seal texture and fracture porosity in sedimentary rocks: cathodoluminescence observations of regional fractures. Journal of Structural Geology. 2004, 26 (5): 967–982. Bibcode:2004JSG....26..967L. doi:10.1016/j.jsg.2003.08.019. 
  39. ^ Sibson, R. H.; Moore, J.; Rankin, A. H. Seismic pumping—a hydrothermal fluid transport mechanism. Journal of the Geological Society. 1975, 131 (6): 653–659 [2011-11-05]. Bibcode:1975JGSoc.131..653S. S2CID 129422364. doi:10.1144/gsjgs.131.6.0653.  . (原始内容存档于2021-02-05). 
  40. ^ Gill, R. Igneous rocks and processes: a practical guide. John Wiley and Sons. 2010: 102. ISBN 978-1-4443-3065-6. 
  41. ^ Shooters – A "Fracking" History. American Oil & Gas Historical Society. [2014-10-12]. (原始内容存档于2020-12-15). 
  42. ^ Acid fracturing. Society of Petroleum Engineers. [2014-10-12]. (原始内容存档于2016-04-04). 
  43. ^ Khan, Salmaan A.页面存档备份,存于互联网档案馆) "Government Roads, Subsidies, and the Costs of Fracking", Mises Institute, 2014-06-19. Retrieved 2018-02-20.
  44. ^ Marcellus页面存档备份,存于互联网档案馆) "Fracking Legend Harold Hamm – Next Secretary of Energy?", Marcellus Drilling News, 2016-06-22. Retrieved 2018-02-20.
  45. ^ 45.0 45.1 Montgomery, Carl T.; Smith, Michael B. Hydraulic fracturing. History of an enduring technology (PDF). JPT Online. December 2010, 62 (12): 26–41 [2012-05-13]. doi:10.2118/1210-0026-JPT. (原始内容 (PDF)存档于2011-09-27). 
  46. ^ Energy Institute. Fact-Based Regulation for Environmental Protection in Shale Gas Development (PDF) (报告). University of Texas at Austin. February 2012 [2012-02-29]. (原始内容 (PDF)存档于2013-05-12). 
  47. ^ A. J. Stark, A. Settari, J. R. Jones, Analysis of Hydraulic Fracturing of High Permeability Gas Wells to Reduce Non-darcy Skin Effects, Petroleum Society of Canada, Annual Technical Meeting, 8–10 June 1998, Calgary, Alberta. 互联网档案馆存档,存档日期2013-10-16.
  48. ^ 48.0 48.1 Mader, Detlef. Hydraulic Proppant Fracturing and Gravel Packing. Elsevier. 1989: 173–174; 202. ISBN 9780444873521. 
  49. ^ 49.0 49.1 49.2 Ben E. Law and Charles W. Spencer, 1993, "Gas in tight reservoirs-an emerging major source of energy," in David G. Howell (ed.), The Future of Energy Gasses, US Geological Survey, Professional Paper 1570, pp. 233–252.
  50. ^ C.R. Fast, G.B. Holman, and R. J. Covlin, "The application of massive hydraulic fracturing to the tight Muddy 'J' Formation, Wattenberg Field, Colorado," in Harry K. Veal, (ed.), Exploration Frontiers of the Central and Southern Rockies (Denver: Rocky Mountain Association of Geologists, 1977) 293–300.
  51. ^ Robert Chancellor, "Mesaverde hydraulic fracture stimulation, northern Piceance Basin – progress report," in Harry K. Veal, (ed.), Exploration Frontiers of the Central and Southern Rockies (Denver: Rocky Mountain Association of Geologists, 1977) 285–291.
  52. ^ C.E Bell and others, Effective diverting in horizontal wells in the Austin Chalk, Society of Petroleum Engineers conference paper, 1993. 互联网档案馆存档,存档日期2013-10-05.
  53. ^ C.E Bell and others, Effective diverting in horizontal wells in the Austin Chalk, Society of Petroleum Engineers conference paper, 1993. 互联网档案馆存档,存档日期2013-10-05.
  54. ^ 54.0 54.1 54.2 Robbins, Kalyani. Awakening the Slumbering Giant: How Horizontal Drilling Technology Brought the Endangered Species Act to Bear on Hydraulic Fracturing (PDF). Case Western Reserve Law Review. 2013, 63 (4) [2016-09-18]. (原始内容 (PDF)存档于2014 -03-26). 
  55. ^ 55.0 55.1 McDermott-Levy, Ruth; Kaktins, Nina; Sattler, Barbara. Fracking, the Environment, and Health. American Journal of Nursing. June 2013, 113 (6): 45–51. ISSN 0002-936X. PMID 23702766. doi:10.1097/01.naj.0000431272.83277.f4. 
  56. ^ E. O. Ray, Shale development in eastern Kentucky页面存档备份,存于互联网档案馆), US Energy Research and Development Administration, 1976.
  57. ^ US Dept. of Energy, How is shale gas produced?页面存档备份,存于互联网档案馆), Apr. 2013.
  58. ^ United States National Research Council, Committee to Review the Gas Research Institute's Research, Development and Demonstration Program, Gas Research Institute. A review of the management of the Gas Research Institute. National Academies. 1989: ?. 
  59. ^ Gold, Russell. The Boom: How Fracking Ignited the American Energy Revolution and Changed the World. New York: Simon & Schuster. 2014: 115–121. ISBN 978-1-4516-9228-0. 
  60. ^ Zukerman, Gregory. Breakthrough: The Accidental Discovery That Revolutionized American Energy. The Atlantis. 2013-11-06 [2016-09-18]. (原始内容存档于2021-01-25). 
  61. ^ US Government Role in Shale Gas Fracking History: An Overview. The Breakthrough Institute. [2012-12-31]. (原始内容存档于2013-01-19). 
  62. ^ SPE production & operations 20. Society of Petroleum Engineers. 2005: 87. 
  63. ^ 63.0 63.1 Interview with Dan Steward, Former Mitchell Energy Vice President. The Breakthrough Institute. [2023-03-22]. (原始内容存档于2019-02-11). 
  64. ^ Zuckerman, Gregory. How fracking billionaires built their empires. Quartz (The Atlantic Media Company). 2013-11-15 [2013-11-15]. (原始内容存档于2020-12-18). 
  65. ^ Wasley, Andrew ( 2013-03-01) On the frontline of Poland's fracking rush页面存档备份,存于互联网档案馆) The Guardian, Retrieved 2013-03-03
  66. ^ (2012-08-07) JKX Awards Fracking Contract for Ukrainian Prospect页面存档备份,存于互联网档案馆) Natural Gas Europe, Retrieved 2013-03-03
  67. ^ ( 2013-02-18) Turkey's shale gas hopes draw growing interest Reuters, Retrieved 2013-03-03
  68. ^ Hydraulic fracturing research study (PDF). EPA. June 2010 [2012-12-26]. EPA/600/F-10/002. (原始内容 (PDF)存档于2012-12-03). 
  69. ^ 69.0 69.1 69.2 69.3 69.4 69.5 69.6 Ground Water Protection Council; ALL Consulting. Modern Shale Gas Development in the United States: A Primer (PDF) (报告). DOE Office of Fossil Energy and National Energy Technology Laboratory: 56–66. April 2009 [2012-02-24]. DE-FG26-04NT15455. (原始内容存档 (PDF)于2020-10-17). 
  70. ^ Penny, Glenn S.; Conway, Michael W.; Lee, Wellington. Control and Modeling of Fluid Leakoff During Hydraulic Fracturing. Journal of Petroleum Technology. June 1985, 37 (6): 1071–1081. doi:10.2118/12486-PA. 
  71. ^ Arthur, J. Daniel; Bohm, Brian; Coughlin, Bobbi Jo; Layne, Mark. Hydraulic Fracturing Considerations for Natural Gas Wells of the Fayetteville Shale (PDF) (报告). ALL Consulting: 10. 2008 [2012-05-07]. (原始内容 (PDF)存档于2012-10-15). 
  72. ^ Chilingar, George V.; Robertson, John O.; Kumar, Sanjay. Surface Operations in Petroleum Production 2. Elsevier. 1989: 143–152. ISBN 9780444426772. 
  73. ^ SYSTEM AND METHOD FOR AN AUTOMATED AND INTELLIGENT FRAC PAD (WIPO Patent Application WO/2020/236703). [2022-11-03]. 
  74. ^ Love, Adam H. Fracking: The Controversy Over its Safety for the Environment. Johnson Wright, Inc. December 2005 [2012-06-10]. (原始内容存档于2013-05-01). 
  75. ^ Hydraulic Fracturing. University of Colorado Law School. [2012-06-02]. (原始内容存档于2021-01-25). 
  76. ^ Wan Renpu. Advanced Well Completion Engineering. Gulf Professional Publishing. 2011: 424. ISBN 9780123858689. 
  77. ^ Martín, Mariano. Nonconventional Fossil Energy Sources: Shale Gas and Methane Hydrates. Alternative Energy Sources and Technologies. Springer International Publishing. 2016: 3–16. ISBN 978-3-319-28750-8. doi:10.1007/978-3-319-28752-2_1. Two alternatives to transport the proppant can be used, either a high viscosity fluid or a high flow rate. The first one generates large fractures while the second one causes small micro fractures in the formation. 
  78. ^ 78.0 78.1 78.2 78.3 78.4 Andrews, Anthony; et al. Unconventional Gas Shales: Development, Technology, and Policy Issues (PDF) (报告). Congressional Research Service: 7; 23. 2009-10-30 [2012-02-22]. (原始内容存档 (PDF)于2020-09-24). 
  79. ^ Ram Narayan. From Food to Fracking: Guar Gum and International Regulation. RegBlog. University of Pennsylvania Law School. 2012-08-08 [2012-08-15]. (原始内容存档于2012-08-22). 
  80. ^ Hartnett-White, K. The Fracas About Fracking- Low Risk, High Reward, but the EPA is Against it (PDF). National Review Online. 2011 [2012-05-07]. (原始内容存档 (PDF)于2020-08-09). 
  81. ^ Brainard, Curtis. The Future of Energy. Popular Science Magazine. June 2013: 59 [2014-01-01]. (原始内容存档于2017-02-03). 
  82. ^ Brino, Anthony; News, InsideClimate; Nearing, Brian; Times-Union, Albany. New Waterless Fracking Method Avoids Pollution Problems, But Drillers Slow to Embrace It. Inside Climate News. 2011-11-06 [2021-11-17] (美国英语). 
  83. ^ A Material Difference. carboceramics.com. 
  84. ^ Hydraulic fracturing water use, 2011–2014. News images. USGS. [2015-07-03]. (原始内容存档于2015-07-03). 
  85. ^ Central, Bobby. Water Use Rises as Fracking Expands. Scientific American. [2015-07-03]. 
  86. ^ Dong, Linda. What goes in and out of Hydraulic Fracturing. Dangers of Fracking. [2015-04-27]. (原始内容存档于2015-07-03). 
  87. ^ Hydraulic fracturing chemical spills on agricultural land need scrutiny. Gale Academic Onefile. 2016-06-17. 
  88. ^ Chemicals Used in Hydraulic Fracturing (PDF) (报告). Committee on Energy and Commerce U.S. House of Representatives: ?. 2011-04-18. (原始内容 (PDF)存档于2011-07-21). 
  89. ^ Ramana Murthy RVV; 1 Devaraju S. A Review of Linear Gel Fracturing Fluids (PDF). Trends in Petroleum Engineering. [2022-11-04]. 
  90. ^ Fracturing of a wet well utilizing an air/fuel mixture and multiple plate orifice assembly (WIPO Patent Application WO2022132523A1). [2022-11-04]. 
  91. ^ 91.0 91.1 ALL Consulting. The Modern Practices of Hydraulic Fracturing: A Focus on Canadian Resources (报告). Canadian Association of Petroleum Producers. June 2012 [2012-08-04]. (原始内容 (PDF)存档于2013-05-18). 
  92. ^ 92.0 92.1 Reis, John C. (1976). Environmental Control in Petroleum Engineering. Gulf Professional Publishers.
  93. ^ Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry (PDF) (报告). International Atomic Energy Agency: 39–40. 2003 [2012-05-20]. (原始内容存档 (PDF)于2014-08-25). Beta emitters, including 3H and 14C, may be used when it is feasible to use sampling techniques to detect the presence of the radiotracer, or when changes in activity concentration can be used as indicators of the properties of interest in the system. Gamma emitters, such as 46Sc, 140La, 56Mn, 24Na, 124Sb, 192Ir, 99Tcm, 131I, 110Agm, 41Ar and 133Xe are used extensively because of the ease with which they can be identified and measured. ... In order to aid the detection of any spillage of solutions of the 'soft' beta emitters, they are sometimes spiked with a short half-life gamma emitter such as 82Br 
  94. ^ Glenn R. McColpin. Fiber Optic Sensors Creating New Possibilities For Optimizing Fracturing. The American Oil & Gas Reporter. July 2013 [2022-11-04]. 
  95. ^ 95.0 95.1 Bennet, Les; et al. The Source for Hydraulic Fracture Characterization. Oilfield Review: 42–57. [2012 -09-30]. (原始内容 (PDF)存档于2014-08-25). 
  96. ^ From revolution to evolution. Drilling Contractor. 2015-01-27 [2022-11-04]. 
  97. ^ Seale, Rocky. Open hole completion systems enables multi-stage fracturing and stimulation along horizontal wellbores (PDF). Drilling Contractor Fracturing stimulation. July–August 2007 [2009-10-01]. (原始内容存档 (PDF)于2019-01-20). 
  98. ^ The Barnett Shale (PDF). North Keller Neighbors Together. [2012-05-14]. (原始内容 (PDF)存档于2021-01-26). 
  99. ^ David Wethe. Like Fracking? You'll Love 'Super Fracking'. Businessweek. 2012-01-19 [2012-01-22]. (原始内容存档于2014-10-04). 
  100. ^ Production Decline of a Natural Gas Well Over Time. Geology.com. The Geology Society of America. 2012-01-03 [2012-03-04]. (原始内容存档于2020-11-26). 
  101. ^ Economides, Michael J. Reservoir stimulation. J. Wiley. 2000: P-2. ISBN 9780471491927. 
  102. ^ Gidley, John L. Recent Advances in Hydraulic Fracturing. SPE Monograph 12. SPE. 1989: ?. ISBN 9781555630201. 
  103. ^ Ching H. Yew. Mechanics of Hydraulic Fracturing. Gulf Professional Publishing. 1997: ?. ISBN 9780884154747. 
  104. ^ Banks, David; Odling, N. E.; Skarphagen, H.; Rohr-Torp, E. Permeability and stress in crystalline rocks. Terra Nova. May 1996, 8 (3): 223–235. Bibcode:1996TeNov...8..223B. doi:10.1111/j.1365-3121.1996.tb00751.x. 
  105. ^ Brown, Edwin Thomas. Block Caving Geomechanics 2nd. Indooroopilly, Queensland: Julius Kruttschnitt Mineral Research Centre, UQ. 2007 [2003] [2012-05-14]. ISBN 978-0-9803622-0-6. (原始内容存档于2017-07-04). 
  106. ^ Frank, U.; Barkley, N. Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction. Journal of Hazardous Materials. February 1995, 40 (2): 191–201 [2023-03-22]. ISSN 0304-3894. doi:10.1016/0304-3894(94)00069-S. (原始内容存档于2021-02-05). 
  107. ^ Bell, Frederic Gladstone. Engineering Geology and Construction. Taylor & Francis. 2004: 670. ISBN 9780415259392. 
  108. ^ Aamodt, R. Lee; Kuriyagawa, Michio. Measurement of Instantaneous Shut-In Pressure in Crystalline Rock. Hydraulic fracturing stress measurements. National Academies. 1983: 139. 
  109. ^ Geothermal Technologies Program: How an Enhanced Geothermal System Works. eere.energy.gov. 2011-02-16 [2011-11-02]. (原始内容存档于2014-02-24). 
  110. ^ Miller, Bruce G. Coal Energy Systems. Sustainable World Series. Academic Press. 2005: 380. ISBN 9780124974517. 
  111. ^ Russell Gold. Fracking Has a Bad Rep, but Its Tech Is Powering a Clean Energy Shift Texas start-ups are harnessing know-how born of the shale boom in pursuit of a greener future.. Texas Monthly. 2021-09-21 [2021-09-23]. (原始内容存档于2021-09-24). 
  112. ^ Waltz, James; Decker, Tim L, Hydro-fracturing offers many benefits, Johnson Driller's Journal, 1981, (2nd quarter): 4–9 
  113. ^ Williamson, WH, The use of hydraulic techniques to improve the yield of bores in fractured rocks, Groundwater in Fractured Rock, Conference Series (5), Australian Water Resources Council, 1982 
  114. ^ Less, C; Andersen, N, Hydrofracture: state of the art in South Africa, Applied Hydrogeology, Feb 1994, 2 (2): 59–63, doi:10.1007/s100400050050 
  115. ^ Howell, Emily L.; Wirz, Christopher D.; Brossard, Dominique; Scheufele, Dietram A.; Xenos, Michael A. Seeing through risk-colored glasses: Risk and benefit perceptions, knowledge, and the politics of fracking in the United States. Energy Research & Social Science. 2019-09, 55: 168–178 [2022-11-05]. ISSN 2214-6296. doi:10.1016/j.erss.2019.05.020. 
  116. ^ Dews, Fred. The economic benefits of fracking. Brookings. [2017-11-21]. (原始内容存档于2021-02-05). 
  117. ^ Phillips. K. (2012). What is the True Cost of Hydraulic Fracturing? Incorporating Negative Externalities into the Cost of America’s Latest Energy Alternative. Journal of Environmental Sciences Program. 2,1st Edition, Appalachian State University, Boone, NC
  118. ^ Economic and National Security Impacts under a Hydraulic Fracturing Ban (PDF). U.S. Department of Energy. January 2021 [2022-11-05]. (原始内容存档 (PDF)于2023-04-16). 
  119. ^ Lynn Cook, Bradley Olson and. Wall Street Tells Frackers to Stop Counting Barrels, Start Making Profits. Wall Street Journal. 2017-12-13 [2018-05-02]. (原始内容存档于2021-01-21). 
  120. ^ Berman, Art. Shale Gas Is Not A Revolution. Forbes. [2018-05-02]. (原始内容存档于2021-01-26). 
  121. ^ 121.0 121.1 121.2 Naima Farah. Fracking and Land Productivity: Effects of Hydraulic Fracturing on Agriculture (PDF). Washington, D.C.: Annual Meeting of the International Water and Resource Economics Consortium: 1–9. September 2016 [2023-03-22]. (原始内容存档 (PDF)于2020-08-01). 
  122. ^ Howarth, Robert W.; Ingraffea, Anthony; Engelder, Terry. Should fracking stop?. Nature. September 2011, 477 (7364): 271–275 [2023-03-22]. ISSN 0028-0836. PMID 21921896. S2CID 205067220. doi:10.1038/477271a. (原始内容存档于2020-11-28). 
  123. ^ Jan Goodey. The UK's anti fracking movement is growing. The Ecologist. 2013-08-01 [2013-07-29]. (原始内容存档于2017-10-03). 
  124. ^ Breaking: Test plan for Balcombe oil well refused unanimously. BLOG AT WORDPRESS.COM. 2021-03-21 [2022-11-05]. 
  125. ^ Javers, Eamon. Oil Executive: Military-Style 'Psy Ops' Experience Applied. CNBC. 2011-11-08 [2023-03-22]. (原始内容存档于2017-09-11). 
  126. ^ Phillips, Susan. 'We're Dealing with an Insurgency,' says Energy Company Exec of Fracking Foes. National Public Radio. 2011-11-09 [2023-03-22]. (原始内容存档于2020-08-08). 
  127. ^ Palmer, Mike. Oil-gas boom spawns Harrison safety talks. Times Leader. 2013-03-27 [2013-03-27]. (原始内容存档于2016-04-12). 
  128. ^ Shots fired at W. Pa. gas drilling site. The Philadelphia Inquirer. 2013-03-12 [2013-03-27]. (原始内容存档于2013-07-29). 
  129. ^ Detrow, Scott. Pipe Bomb Found Near Allegheny County Pipeline. NPR. 2012-08-15 [2013-03-27]. (原始内容存档于2020-12-20). 
  130. ^ Mother Jones, Sept./Oct. 2014 "How Hillary Clinton’s State Department Sold Fracking to the World: A Trove of Secret Documents Details the US Government’s Global Push for Shale Gas"
  131. ^ The Guardian (UK), 2016-12-01 "Obama's Dirty Secret: The Fossil Fuel Projects The US Littered Around The World"
  132. ^ Andrew Higgins. Russian Money Suspected Behind Fracking Protests. New York Times. 2014-11-30 [2014-12-04]. (原始内容存档于2021-02-13). 
  133. ^ With governor's signature, Maryland becomes third state to ban fracking. 2017-04-05 [2023-03-22]. (原始内容存档于2020-11-29). 
  134. ^ Tom Johnson. New Jersey governor: Ban fracking, all related activities in Delaware River Basin. STATEIMPACT PENNSYLVANIA. 2019-01-31 [2022-11-05]. 
  135. ^ Documentary: Gasland (2010)页面存档备份,存于互联网档案馆). 104 minutes.
  136. ^ Gasland. PBS. 2010 [2012-05-14]. (原始内容存档于2020-11-09). 
  137. ^ Gasland Debunked (PDF). Energy in Depth. [2012-05-14]. (原始内容存档 (PDF)于2020-11-16). 
  138. ^ Affirming Gasland (PDF). July 2010 [2010-12-21]. (原始内容 (PDF)存档于2012-10-19). 
  139. ^ 139.0 139.1 Gilbert, Daniel. Matt Damon Fracking Film Lights Up Petroleum Lobby. The Wall Street Journal ( ). 2012-10-07 [2012-12-26]. (原始内容存档于2018-02-12). 
  140. ^ Gerhardt, Tina. Matt Damon Exposes Fracking in Promised Land. The Progressive. 2012-12-31 [2013-01-04]. (原始内容存档于2016-08-26). 
  141. ^ Kickstarter, FrackNation by Ann and Phelim Media LLC, 2012-04-06
  142. ^ The Hollywood Reporter, Mark Cuban's AXS TV Picks Up Pro-Fracking Documentary 'FrackNation', 2012-12-17
  143. ^ The Ethics of Fracking. Green Planet Films. [2015-04-27]. (原始内容存档于2020-10-01). 
  144. ^ 'Fractured Land' Doc Coming to VIFF. The Tyee. 2015-09-09 [2015-10-20]. (原始内容存档于2020-08-01). 
  145. ^ Deller, Steven; Schreiber, Andrew. Mining and Community Economic Growth. The Review of Regional Studies. 2012, 42 (2): 121–141 [2013-03-03]. doi:10.52324/001c.8126. (原始内容 (PDF)存档于2014-05-02). 
  146. ^ Soraghan, Mike. Quiet foundation funds the 'anti-fracking' fight. E&E News. 2012-03-12 [2013-03-27]. (原始内容存档于2013-01-22). In our work to oppose fracking, the Park Foundation has simply helped to fuel an army of courageous individuals and NGOs,' or non-governmental organizations, said Adelaide Park Gomer, foundation president and Park heir, in a speech late last year. 
  147. ^ 147.0 147.1 Urbina, Ian. Pressure Limits Efforts to Police Drilling for Gas. The New York Times. 2011-03-03 [2012-02-23]. (原始内容存档于2020-11-12). More than a quarter-century of efforts by some lawmakers and regulators to force the federal government to police the industry better have been thwarted, as E.P.A. studies have been repeatedly narrowed in scope and important findings have been removed 
  148. ^ The Debate Over the Hydrofracking Study's Scope. The New York Times. 2011 -03-03 [2012-05-01]. (原始内容存档于2020-05-23). While environmentalists have aggressively lobbied the agency to broaden the scope of the study, industry has lobbied the agency to narrow this focus 
  149. ^ Natural Gas Documents. The New York Times. 2011 -02-27 [2012-05-05]. (原始内容存档于2021-02-04). The Times reviewed more than 30,000 pages of documents obtained through open records requests of state and federal agencies and by visiting various regional offices that oversee drilling in Pennsylvania. Some of the documents were leaked by state or federal officials. 
  150. ^ 150.0 150.1 Finkel, M.L.; Hays, J. The implications of unconventional drilling for natural gas: a global public health concern. Public Health (Review). October 2013, 127 (10): 889–893. PMID 24119661. doi:10.1016/j.puhe.2013.07.005. 
  151. ^ 151.0 151.1 151.2 151.3 151.4 Kibble, A.; Cabianca, T.; Daraktchieva, Z.; Gooding, T.; Smithard, J.; Kowalczyk, G.; McColl, N. P.; Singh, M.; Mitchem, L.; Lamb, P.; Vardoulakis, S.; Kamanyire, R. Review of the Potential Public Health Impacts of Exposures to Chemical and Radioactive Pollutants as a Result of the Shale Gas Extraction Process (PDF) (报告). Public Health England. June 2014 [2023-03-22]. ISBN 978-0-85951-752-2. PHE-CRCE-009. (原始内容存档 (PDF)于2017-01-20). 
  152. ^ Drajem, Mark. Fracking Political Support Unshaken by Doctors' Call for Ban. Bloomberg. 2012-01-11 [2012-01-19]. (原始内容存档于2014-10-19). 
  153. ^ Alex Wayne. Health Effects of Fracking Need Study, Says CDC Scientist. Bloomberg Businessweek. 2012-01-04 [2012-02-29]. (原始内容存档于2012-03-13). 
  154. ^ March for a Clean Energy Revolution in Philadelphia. Greenpeace Media. 2016-07-24 [2022-11-08]. 
  155. ^ Centner, Terence J. Oversight of shale gas production in the United States and the disclosure of toxic substances. Resources Policy. September 2013, 38 (3): 233–240. doi:10.1016/j.resourpol.2013.03.001. 
  156. ^ Colborn, Theo; et al. Natural Gas Operations from a Public Health Perspective (PDF). Human and Ecological Risk Assessment. 2011-09-20, 17 (5): 1039–1056 [2023-03-22]. S2CID 53996198. doi:10.1080/10807039.2011.605662. (原始内容存档 (PDF)于2015-02-13). 
  157. ^ 157.0 157.1 157.2 157.3 157.4 Broomfield, Mark. Support to the identification of potential risks for the environment and human health arising from hydrocarbons operations involving hydraulic fracturing in Europe (PDF) (报告). European Commission: vi–xvi. 2012-08-10 [2014-09-29]. ED57281. (原始内容存档于2020-12-24).  |issue=被忽略 (帮助)
  158. ^ EU Commission minimum principles for the exploration and production of hydrocarbons (such as shale gas) using high-volume hydraulic fracturing. EUR LEX. 2014-02-08 [2023-03-22]. (原始内容存档于2020-12-04). 
  159. ^ Energy and environment. EUR LEX. [2023-03-22]. (原始内容存档于2020-11-12). 
  160. ^ Lauver LS. Environmental health advocacy: an overview of natural gas drilling in northeast Pennsylvania and implications for pediatric nursing. J Pediatr Nurs. August 2012, 27 (4): 383–9. PMID 22703686. doi:10.1016/j.pedn.2011.07.012. 
  161. ^ Elaine, Hill; Lala, Ma. Shale Gas Development and Drinking Water Quality. American Economic Review. 2017-05-01, 107 (5): 522–525. ISSN 0002-8282. PMC 5804812 . PMID 29430021. doi:10.1257/aer.p20171133. 
  162. ^ Li, Longxiang; Dominici, Francesca; Blomberg, Annelise J.; Bargagli-Stoffi, Falco J.; Schwartz, Joel D.; Coull, Brent A.; Spengler, John D.; Wei, Yaguang; Lawrence, Joy; Koutrakis, Petros. Exposure to unconventional oil and gas development and all-cause mortality in Medicare beneficiaries. Nature Energy. 2022-01-27, 7 (2): 177–185. Bibcode:2022NatEn...7..177L. ISSN 2058-7546. PMC 9004666 . PMID 35425643. S2CID 246373641. doi:10.1038/s41560-021-00970-y (英语). 
  163. ^ Fatalities among oil and gas extraction workers – United States, 2003–2006. 2008. doi:10.1037/e458082008-002. 
  164. ^ McDonald, J. C.; McDonald, A. D.; Hughes, J. M.; Rando, R. J.; Weill, H. Mortality from Lung and Kidney Disease in a Cohort of North American Industrial Sand Workers: An Update. The Annals of Occupational Hygiene. 2005-02-22, 49 (5): 367–73. ISSN 1475-3162. PMID 15728107. doi:10.1093/annhyg/mei001 . 
  165. ^ 165.0 165.1 OSHA/NIOSH Hazard Alert: Worker Exposure to Silica During Hydraulic Fracturing. June 2012 [2023-03-22]. (原始内容存档于2021-02-05). 
  166. ^ Office of radiation and indoor air: Program description. 1993-06-01 [2023-03-22]. doi:10.2172/10115876. (原始内容存档于2021-02-05). 
  167. ^ Environmental Protection Agency (EPA). Springer Reference. SpringerReference (Springer-Verlag). 2011. S2CID 215710290. doi:10.1007/springerreference_32156. 
  168. ^ Vogel, L. Fracking tied to cancer-causing chemicals. CMAJ. 2017, 189 (2): E94–E95. PMC 5235941 . PMID 27956395. doi:10.1503/cmaj.109-5358. 
  169. ^ Tatomir, A., McDermott, C., Bensabat, J., Class, H., Edlmann, K., Taherdangkoo, R., & Sauter, M. (2018) https://www.adv-geosci.net/45/185/2018/. Conceptual model development using a generic Features, Events, and Processes (FEP) database for assessing the potential impact of hydraulic fracturing on groundwater aquifers, Advances in Geosciences, v.45, p185-192.
  170. ^ 170.0 170.1 170.2 170.3 170.4 170.5 170.6 Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report). United States Environmental Protection Agency. Environmental Protection Agency. [2016-12-17]. (原始内容存档于2021-02-08).    本文含有此来源中属于公有领域的内容。
  171. ^ Buono, Regina; Lopez-Gunn, Elena; McKay, Jennifer; Staddon, Chad. Regulating Water Security in Unconventional Oil and Gas 1st 2020. Cham. 2020. ISBN 978-3-030-18342-4. 
  172. ^ Abdalla, Charles W.; Drohan, Joy R. Water Withdrawals for Development of Marcellus Shale Gas in Pennsylvania. Introduction to Pennsylvania's Water Resources (PDF) (报告). The Pennsylvania State University. 2010 [2012-09-16]. (原始内容 (PDF)存档于2015-03-02). Hydrofracturing a horizontal Marcellus well may use 4 to 8 million gallons of water, typically within about 1 week. However, based on experiences in other major U.S. shale gas fields, some Marcellus wells may need to be hydrofractured several times over their productive life (typically five to twenty years or more) 
  173. ^ Faucon, Benoît. Shale-Gas Boom Hits Eastern Europe. WSJ.com. 2012-09-17 [2012-09-17]. (原始内容存档于2021-02-06). 
  174. ^ New Research of Surface Spills in Fracking Industry. Professional Safety. 2013, 58 (9): 18. 
  175. ^ Taherdangkoo, Reza; Tatomir, Alexandru; Taylor, Robert; Sauter, Martin. Numerical investigations of upward migration of fracking fluid along a fault zone during and after stimulation. Energy Procedia. September 2017, 125: 126–135. doi:10.1016/j.egypro.2017.08.093 . 
  176. ^ Taherdangkoo, Reza; Tatomir, Alexandru; Anighoro, Tega; Sauter, Martin. Modeling fate and transport of hydraulic fracturing fluid in the presence of abandoned wells. Journal of Contaminant Hydrology. February 2019, 221: 58–68. Bibcode:2019JCHyd.221...58T. PMID 30679092. S2CID 59249479. doi:10.1016/j.jconhyd.2018.12.003. 
  177. ^ Logan, Jeffrey. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity (PDF) (报告). Joint Institute for Strategic Energy Analysis. 2012 [2013-03-27]. (原始内容存档 (PDF)于2020-10-20). 
  178. ^ Köster, Vera. What is Shale Gas? How Does Fracking Work?. www.chemistryviews.org. 2013-02-05 [2014-12-04]. (原始内容存档于2020-11-12). 
  179. ^ 7 ways oil and gas drilling is bad for the environment | The Wilderness Society. www.wilderness.org. [2021-12-01] (英语). 
  180. ^ Moran, Matthew D. Habitat Loss and Modification Due to Gas Development in the Fayetteville Shale. Environmental Management. 2015-01-08, 55 (6): 1276–1284 [2023-03-22]. Bibcode:2015EnMan..55.1276M. PMID 25566834. S2CID 36628835. doi:10.1007/s00267-014-0440-6. (原始内容存档于2020-08-09). 
  181. ^ Moran, Matthew D. Land-use and ecosystem services costs of unconventional US oil and gas development. Frontiers in Ecology and the Environment. 2017, 15 (5): 237–242. doi:10.1002/fee.1492. 
  182. ^ Frederick J. Herrmann, Federal Railroad Administration, letter to American Petroleum Institute页面存档备份,存于互联网档案馆), 2013-07-17, p.4.
  183. ^ Fitzpatrick, Jessica &, Petersen, Mark. Induced Earthquakes Raise Chances of Damaging Shaking in 2016. USGS. USGS. [2019-04-01]. (原始内容存档于2020-10-30). 
  184. ^ Zoback, Mark; Kitasei, Saya; Copithorne, Brad. Addressing the Environmental Risks from Shale Gas Development (PDF) (报告). Worldwatch Institute: 9. July 2010 [2012-05-24]. (原始内容 (PDF)存档于2018-05-21). 
  185. ^ Begley, Sharon; McAllister, Edward. News in Science: Earthquakes may trigger fracking tremors. ABC Science (Reuters). 2013-07-12 [2013-12-17]. (原始内容存档于2020-11-26). 
  186. ^ Fracking tests near Blackpool 'likely cause' of tremors. BBC News. 2011-11-02 [2012-02-22]. (原始内容存档于2020-11-23). 
  187. ^ Ellsworth, W. L. Injection-Induced Earthquakes. Science. 2013, 341 (6142): 1225942. CiteSeerX 10.1.1.460.5560 . PMID 23846903. S2CID 206543048. doi:10.1126/science.1225942. 
  188. ^ Conca, James. Thanks To Fracking, Earthquake Hazards In Parts Of Oklahoma Now Comparable To California. Forbes. [2023-03-22]. (原始内容存档于2021-02-05). 
  189. ^ Egan, Matt &, Wattles, Jackie. Oklahoma orders shutdown of 37 wells after earthquake. CNN. CNN Money. 2016-09-03 [2016-12-17]. (原始内容存档于2020-10-04). 
  190. ^ Managing the seismic risk posed by wastewater disposal页面存档备份,存于互联网档案馆), Earth Magazine, 57:38–43 (2012), M. D. Zoback. Retrieved 2014-12-31.
  191. ^ Osborn, S. G.; Vengosh, A.; Warner, N. R.; Jackson, R. B. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences. 2011-05-09, 108 (20): 8172–8176. Bibcode:2011PNAS..108.8172O. ISSN 0027-8424. PMC 3100993 . PMID 21555547. doi:10.1073/pnas.1100682108 . 
  192. ^ Roberts JS Testimony of J.Scott Roberts, Deputy Secretary for Mineral Resources Management, Department of Environmental Protection (Pennsylvania) 2010-05-20.
  193. ^ Tabuchi, Hiroko. E.P.A. Allowed Fracking Chemicals Despite Worries. The New York Times. 2021-07-13: B1 [2021-10-20]. Template:GALE. (原始内容存档于2021-07-13). 
  194. ^ U.S. Energy Information Administration. U.S. Energy Facts Explained. 2018-05-16 [2023-03-22]. (原始内容存档于2021-02-21). 
  195. ^ Nolon, John R.; Polidoro, Victoria. Hydrofracking: Disturbances Both Geological and Political: Who Decides? (PDF). The Urban Lawyer. 2012, 44 (3): 1–14 [2012-12-21]. (原始内容存档 (PDF)于2020-08-08). 
  196. ^ Negro, Sorrell E. Fracking Wars: Federal, State, and Local Conflicts over the Regulation of Natural Gas Activities (PDF). Zoning and Planning Law Report. February 2012, 35 (2): 1–14 [2014-05-01]. (原始内容存档 (PDF)于2017-01-10). 
  197. ^ {{cite news |url=http://www.businessweek.com/news/2011-10-04/france-to-keep-fracking-ban-to-protect-environment-sarkozy-says.html页面存档备份,存于互联网档案馆) |title=France to Keep Fracking Ban to Protect Environment, Sarkozy Says |first =Tara | last = Patel |date=2011 -10-04| work = Bloomberg Businessweek |access-date=2012-02-22}
  198. ^ LOI n° 2011-835 du 13 juillet 2011 visant à interdire l'exploration et l'exploitation des mines d'hydrocarbures liquides ou gazeux par fracturation hydraulique et à abroger les permis exclusifs de recherches comportant des projets ayant recours à cette technique (1) - Légifrance. www.legifrance.gouv.fr. 
  199. ^ Article L110-1 - Code de l'environnement - Légifrance. www.legifrance.gouv.fr. 
  200. ^ Fracking ban upheld by French court. BBC. 2013-10-11 [2013-10-16]. (原始内容存档于2021-02-05). 
  201. ^ Moore, Robbie. Fracking, PR, and the Greening of Gas. The International. [2013-03-16]. (原始内容存档于2013-03-21). 
  202. ^ Bakewell, Sally. U.K. Government Lifts Ban on Shale Gas Fracking. Bloomberg. 2012-12-13 [2013-03-26]. (原始内容存档于2017-03-09). 
  203. ^ Hweshe, Francis. South Africa: International Groups Rally Against Fracking, TKAG Claims. West Cape News. 2012-09-17 [2014-02-11]. (原始内容存档于2018-08-11). 
  204. ^ Nicola, Stefan; Andersen, Tino. Germany agrees on regulations to allow fracking for shale gas. Bloomberg. 2013-02-26 [2014-05-01]. (原始内容存档于2016-11-25). 
  205. ^ Farah, Paolo Davide; Tremolada, Riccardo. Regulation and Prospects of the Shale Gas Market in China in Light of International Trade, Energy Law, Production-Sharing Agreements, Environmental Protection and Sustainable Development: A Comparison with the US Experience. 2015. SSRN 2666216 . 
  206. ^ Danica Cullinane. Fracking landscape in Australia by state and territory. Samll Caps. 2018-12-20 [2022-11-06]. 
  207. ^ Ambrose, Jillian. Fracking banned in UK as government makes major U-turn. The Guardian. 2019-11-02 [2023-03-22]. ISSN 0261-3077. (原始内容存档于2021-01-31) (英国英语). 
  208. ^ Healy, Dave. Hydraulic Fracturing or 'Fracking': A Short Summary of Current Knowledge and Potential Environmental Impacts (PDF) (报告). Environmental Protection Agency. July 2012 [2013-07-28]. (原始内容存档 (PDF)于2020-11-28). 
  209. ^ About Us. Ground Water Protection Council. [2022-11-06]. (原始内容存档于2023-01-12). 
  210. ^ Hass, Benjamin. Fracking Hazards Obscured in Failure to Disclose Wells. Bloomberg. 2012-08-14 [2013-03-27]. (原始内容存档于2015-01-09). 
  211. ^ Soraghan, Mike. White House official backs FracFocus as preferred disclosure method. E&E News. 2013-12-13 [2013-03-27]. (原始内容存档于2020-10-31). 
  212. ^ [1]页面存档备份,存于互联网档案馆), Environmental Protection Agency
  213. ^ Gov. Cuomo Makes Sense on Fracking. The New York Times. 2014-12-17 [2014-12-18]. (原始内容存档于2020-11-25). 
  214. ^ Nearing, Brian. Citing perils, state bans fracking. Times Union. 2014-12-18 [2015-01-25]. (原始内容存档于2014-12-18). 
  215. ^ Brady, Jeff. Citing Health, Environment Concerns, New York Moves To Ban Fracking. NPR. 2014-12-18 [2015-01-25]. (原始内容存档于2021-02-05). 

此篇文章包含EPA网址中标题为:Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)的资料[url=https://cfpub.epa.gov/ncea/hfstudy/recordisplay.cfm?deid=332990页面存档备份,存于互联网档案馆)]

进一步阅读

外部链接