j ⋆ ′ = j ⋆ ⋅ ( R ⊙ r ) 2 {\displaystyle j^{\star \prime }=j^{\star }\cdot \left({\frac {R_{\odot }}{r}}\right)^{2}}
R ⊙ {\displaystyle R_{\odot }}
σ T ⊙ 4 ⋅ ( R ⊙ r ) 2 ⋅ π R ⊕ 2 ⋅ ϵ = σ T ⊕ 4 ⋅ 4 π R ⊕ 2 {\displaystyle \sigma T_{\odot }^{4}\cdot \left({\frac {R_{\odot }}{r}}\right)^{2}\cdot \pi R_{\oplus }^{2}\cdot \epsilon =\sigma T_{\oplus }^{4}\cdot 4\pi R_{\oplus }^{2}}
4 π R ⊕ 2 {\displaystyle 4\pi R_{\oplus }^{2}}
π R ⊕ 2 {\displaystyle \pi R_{\oplus }^{2}}
T ⊕ = T ⊙ R ⊙ ϵ 2 r {\displaystyle T_{\oplus }=T_{\odot }{\sqrt {R_{\odot }{\sqrt {\epsilon }} \over 2r}}}