N ⊆ Z ⊆ Q ⊆ R ⊆ C {\displaystyle \mathbb {N} \subseteq \mathbb {Z} \subseteq \mathbb {Q} \subseteq \mathbb {R} \subseteq \mathbb {C} }
正数 R + {\displaystyle \mathbb {R} ^{+}} 自然数 N {\displaystyle \mathbb {N} } 正整数 Z + {\displaystyle \mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {\displaystyle \mathbb {Q} } 代数数 A {\displaystyle \mathbb {A} } 实数 R {\displaystyle \mathbb {R} } 复数 C {\displaystyle \mathbb {C} } 高斯整数 Z [ i ] {\displaystyle \mathbb {Z} [i]}
负数 R − {\displaystyle \mathbb {R} ^{-}} 整数 Z {\displaystyle \mathbb {Z} } 负整数 Z − {\displaystyle \mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {\displaystyle \mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {\displaystyle \mathbb {Z} [\omega ]}
二元数 四元数 H {\displaystyle \mathbb {H} } 八元数 O {\displaystyle \mathbb {O} } 十六元数 S {\displaystyle \mathbb {S} } 超实数 ∗ R {\displaystyle ^{*}\mathbb {R} } 大实数 上超实数
双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数
质数 P {\displaystyle \mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值
规矩数 可定义数 序数 超限数 p进数 数学常数
圆周率 π = 3.14159265 {\displaystyle \pi =3.14159265} … 自然对数的底 e = 2.718281828 {\displaystyle e=2.718281828} … 虚数单位 i = − 1 {\displaystyle i={\sqrt {-{1}}}} 无限大 ∞ {\displaystyle \infty }
双复数是拥有以下形式的超复数:
而 i j = j i = k , i 2 = − 1 , j 2 = − 1. {\displaystyle ij=ji=k,\quad i^{2}=-1,\quad j^{2}=-1.}
在双复数 t = w + x i + y j + z k , {\displaystyle t=w+xi+yj+zk,\ } 中,请注意由于ij=k,所以 t = ( w + x i ) + ( y + z i ) j {\displaystyle t=(w+xi)+(y+zi)j\ } 。 这映射
是一个以2x2的复数矩阵组成的双复数的线性表示方式。
例如,ik = i(ij) = (ii)j = −j的线性表示法是
请注意这代数矩阵与其他代数矩阵的分别是:这代数矩阵是一个可交换的代数矩阵。