碘化𬭸

化合物

碘化𬭸是一种化合物,化学式为PH
4
I
。它含有未取代的𬭸阳离子(PH+
4
)。碘化𬭸通常用作磷化氢的储存剂[1]和用磷取代有机分子的试剂。[2]

碘化𬭸
IUPAC名
Phosphanium iodide
别名 碘化膦
识别
CAS号 12125-09-6
PubChem 166618
ChemSpider 145802
SMILES
 
  • [PH4+].[I-]
EINECS 235-189-0
性质
化学式 PH4I
摩尔质量 161.910 g·mol⁻¹
沸点 62 °C(335 K)
溶解性 分解
结构
晶体结构 四方 (P4/nmm)
晶格常数 a = 6.34 Å, c = 4.62 Å
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

制备

碘化𬭸是由四碘化二磷在80 °C下用白磷和水使其升华制备:[3][4]

10 P
2
I
4
+ 13 P
4
+ 128 H
2
O → 40 PH
4
I + 32 H
3
PO
4

碘化氢磷化氢直接化合:

PH
3
+ HI ⇌ PH
4
I

向白磷和三碘化磷的混合物中加水得到:

3P
4
+ 2PI
3
+ 24H
2
O → 6PH
4
I + 8H
3
PO
4

性质

结构

其晶体结构具有四方空间群P4/nmm,是NH4Cl晶体结构的扭曲版本,晶胞的尺寸约为634×634×462pm。[5]体系中的氢键导致PH+
4
阳离子有方向性,使氢原子指向I
阴离子。[6]

化学性质

在62°C和大气压下,碘化𬭸会升华并可逆分解为磷化氢碘化氢[7]在空气中缓慢氧化生成碘和五氧化二磷。它具有吸湿性[3],会水解成磷化氢和碘化氢:[8]

PH
4
I ⇌ PH
3
+ HI

通过将水溶液与氢氧化钾混合,可以从碘化𬭸中脱除磷化氢气体:[9]

PH
4
I + KOH → PH
3
+ KI + H
2
O

在非极性溶液中与反应生成对应卤化磷:

2PH
4
I + 5I
2
→ P
2
I
4
+ 8HI[3]

碘化𬭸是有机化学中一种强有力的取代试剂,例如它可以通过取代将吡啶𬭩转化为[2]1951年,Glenn Halstead Brown发现碘化𬭸与乙酰氯反应生成未知的膦衍生物,可能是CH
3
C(=PH)PH
2
 · HI。[3]

参考资料

  1. ^ Morrow, B. A.; McFarlane, Richard A. Trimethylgallium adsorbed on silica and its reaction with phosphine, arsine, and hydrogen chloride: an infrared and Raman study. The Journal of Physical Chemistry. July 1986, 90 (14): 3192–3197. ISSN 0022-3654. doi:10.1021/j100405a029. 
  2. ^ 2.0 2.1 Mei, Yanbo. Complexes, Heterocycles, and Depolymerizable Polymers. Made from Building Blocks with Low-coordinated Phosphorus (学位论文). ETH Zurich: 18. 2020 [6 October 2020]. doi:10.3929/ethz-b-000431853. hdl:20.500.11850/431853. (原始内容存档于2020-10-15). 
  3. ^ 3.0 3.1 3.2 3.3 Brown, Glenn Halstead. Reactions of phosphine and phosphonium iodide (学位论文). Iowa State College. 1951 [5 Oct 2020]. (原始内容存档于2020-10-09). 
  4. ^ Work, J. B.; Mattern, J. A.; Antonucci, R. Phosphonium Iodide. Inorganic Syntheses. 5 January 2007: 141–144. doi:10.1002/9780470132333.ch41. 
  5. ^ Dickinson, Roscoe G. The Crystal Structure of Phosphonium Iodide. Journal of the American Chemical Society. July 1922, 44 (7): 1489–1497 [2023-05-01]. doi:10.1021/ja01428a015. (原始内容存档于2023-05-04). 
  6. ^ Sequeira, A.; Hamilton, Walter C. Hydrogen Bonding in Phosphonium Iodide: A Neutron-Diffraction Study. The Journal of Chemical Physics. September 1967, 47 (5): 1818–1822. Bibcode:1967JChPh..47.1818S. doi:10.1063/1.1712171. 
  7. ^ Smith, Alexander.; Calvert, Robert Peyton. The Dissociation Pressures of Ammonium- and Tetramethylammonium Halides and of Phosphonium Iodide and Phosphorus Pentachloride. Journal of the American Chemical Society. July 1914, 36 (7): 1363–1382 [6 October 2020]. doi:10.1021/ja02184a003. 
  8. ^ Levchuk, Ievgen. Design and optimization of luminescent semiconductor nanocrystals for optoelectronic applications (PDF) (学位论文). University of Erlangen–Nuremberg: 140. 2017 [6 Oct 2020]. (原始内容存档 (PDF)于2023-05-01). 
  9. ^ Osadchenko, Ivan M; Tomilov, Andrei P. Phosphorus Hydrides. Russian Chemical Reviews. 30 June 1969, 38 (6): 495–504. Bibcode:1969RuCRv..38..495O. S2CID 250872306. doi:10.1070/RC1969v038n06ABEH001756. 

延伸阅读

  1. Химическая энциклопедия / Редкол.: Зефиров Н.С. и др.. — М.: Большая Российская энциклопедия, 1998. — Т. 5. — 783 с. — ISBN 5-85270-310-9.
  2. Справочник химика / Редкол.: Никольский Б.П. и др.. — 2-е изд., испр. — М.-Л.: Химия, 1966. — Т. 1. — 1072 с.
  3. Справочник химика / Редкол.: Никольский Б.П. и др.. — 3-е изд., испр.. — Л.: Химия, 1971. — Т. 2. — 1168 с.
  4. Лидин Р.А. и др. Химические свойства неорганических веществ: Учеб. пособие для вузов. — 3-е изд., испр.. — М.: Химия, 2000. — 480 с. — ISBN 5-7245-1163-0.