大斜方截半二十面體
在幾何學中,大斜方截半二十面體(英語:Great rhombicosidodecahedron)又稱為截角截半二十面體(英語:Truncated icosidodecahedron)是一種半正多面體,由於其具有點可遞的性質,因此屬於阿基米德立體[1],是十三種由2種以上的正多邊形組成的非柱體幾何圖形之一。
(按這裏觀看旋轉模型) | |||||
類別 | 半正多面體 | ||||
---|---|---|---|---|---|
對偶多面體 | 四角化菱形三十面體 | ||||
識別 | |||||
名稱 | 大斜方截半二十面體 | ||||
參考索引 | U28, C31, W16 | ||||
鮑爾斯縮寫 | grid | ||||
數學表示法 | |||||
考克斯特符號 | |||||
施萊夫利符號 | tr{5,3} | ||||
威佐夫符號 | 2 3 5 | | ||||
康威表示法 | bD taD | ||||
性質 | |||||
面 | 62 | ||||
邊 | 180 | ||||
頂點 | 120 | ||||
歐拉特徵數 | F=62, E=180, V=120 (χ=2) | ||||
組成與佈局 | |||||
面的種類 | 正方形 正六邊形 正十邊形 | ||||
面的佈局 | 30個{4} 20個{6} 12個{10} | ||||
頂點圖 | 4.6.10 | ||||
對稱性 | |||||
對稱群 | Ih群 | ||||
特性 | |||||
環帶多面體 | |||||
圖像 | |||||
| |||||
大斜方截半二十面體共有62個面、180條稜和120個頂點,是凸均勻多面體中頂點數最多也是稜數最多的多面體。由於其每個面都具有點對稱性(與180°的旋轉對稱等效),因此是一種環帶多面體。
命名
名稱截角截半二十面體(英語:Truncated icosidodecahedron)最初由約翰內斯·開普勒給出,但這個名稱有歧義,因為直接將截半二十面體透過截角變換的結果,其所形成的四邊形面是一個長方形而不是正方形,然而這個立體圖形在拓樸上與大斜方截半二十面體等價。 大斜方截半二十面體還有幾個不同的名稱: |
性質
由30個正方形,20個正六邊形和12個正十邊形組成,有120個頂點和180條棱。除稜柱和反稜柱以外,如果所有的阿基米德立體具有相同的棱長,大斜方截半二十面體將具有最大的表面積和體積。
尺寸
若一大斜方截半二十面體的邊長為a,則有下列性質:
- 體積與表面積:
- 外接球半徑
- 內切球半徑
- ,由此可知,內切球體積為 ,其值約為 [8]
- 面心距
- 令 為大斜方截半二十面體的邊心距、十二面體外接球半徑為 、正二十面體外接球半徑為 ,和菱形三十面體長對角線的接球半徑為 。 存在下列等式:
作法
將一個正十二面體(正二十面體)三十條棱都切一刀,在二十(十二)個頂點處也切一刀,但是要切的薄一點,就可以得到一個大斜方截半二十面體。
頂點坐標
在三維笛卡兒坐標系中,以原點為幾何中心,邊長2τ-2的大斜方截半二十面體的坐標是以下坐標的全偶排列[10]:
- (±1/φ, ±1/φ, ±(3 + φ)),
- (±2/φ, ±φ, ±(1 + 2φ)),
- (±1/φ, ±φ2, ±(−1 + 3φ)),
- (±(2φ − 1), ±2, ±(2 + φ)) and
- (±φ, ±3, ±2φ),
其中 即黃金分割率
相關多面體與鑲嵌
領結二十面體和領結十二面體的結構可以看做是大斜方截半二十面體的正方形面被分割成兩個梯形[11] |
大斜方截半二十面體又稱為截角截半二十面體,是正二十面體截半後再經過特殊的截角變換後的結果,其他也是由正二十面體透過康威變換得到的多面體有:
對稱群: [5,3], (*532) | [5,3]+, (532) | ||||||
---|---|---|---|---|---|---|---|
{5,3} | t0,1{5,3} | t1{5,3} | t0,1{3,5} | {3,5} | t0,2{5,3} | t0,1,2{5,3} | s{5,3} |
半正多面體對偶 | |||||||
V5.5.5 | V3.10.10 | V3.5.3.5 | V5.6.6 | V3.3.3.3.3 | V3.4.5.4 | V4.6.10 | V3.3.3.3.5 |
大斜方截半二十面體圖
大斜方截半二十面體圖 | |
---|---|
頂點 | 120 |
邊 | 180 |
半徑 | 15 |
直徑 | 15 |
圍長 | 4 |
自同構群 | 120 (A5×2) |
色數 | 2 |
屬性 | 立方體、 哈密頓、 正則、 零對稱性 |
在圖論的數學領域中,與大斜方截半二十面體相關的圖為大斜方截半二十面體圖又稱為截角截半二十面體圖,是大斜方截半二十面體之邊與頂點的圖,是一種阿基米德圖[12]。
性質
大斜方截半二十面體圖與大斜方截半二十面體有相同的拓樸結構,其頂點與邊的數量及結構都與阿基米德立體中的大斜方截半二十面體相同,共有120個頂點和180條邊,是阿基米德圖中,頂點和邊數最多的圖,且是一個位於零對稱性和立方體的阿基米德圖[12]。
3階對稱性 |
2階對稱性 |
參見
參考文獻
- Cromwell, P.; Polyhedra(頁面存檔備份,存於互聯網檔案館), CUP hbk (1997), pbk. (1999).
- 埃里克·韋斯坦因. GreatRhombicosidodecahedron. MathWorld.、埃里克·韋斯坦因. Archimedean solid. MathWorld.
- Klitzing, Richard. 3D convex uniform polyhedra x3x5x - grid. bendwavy.org.
- ^ 1.0 1.1 Cromwell, P. Polyhedra. United Kingdom: Cambridge. 1997: 79–86 Archimedean solids. ISBN 0-521-55432-2.
- ^ Wenninger, Magnus, Polyhedron Models, Cambridge University Press, 1974, ISBN 978-0-521-09859-5, MR 0467493
- ^ Wenninger, (Model 16[2], p. 30)
- ^ Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979. ISBN 0-486-23729-X.
- ^ Williamson[4] (Section 3-9, p. 94)
- ^ Cromwell[1] (p. 82)
- ^ 7.0 7.1 Weisstein, Eric W. (編). Great rhombicosidodecahedron. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語).
- ^ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 Harish Chandra Rajpoot. Mathematical analysis of great rhombicosidodecahedron (the largest Ar…. 2015-03-19 [2017-07-03]. (原始內容存檔於2018-08-26).
- ^ 9.0 9.1 9.2 9.3 9.4 Robert Whittaker. The Great Rhombicosidodecahedron | polyhedra.mathmos.net. polyhedra.mathmos.net. [2017-07-11]. (原始內容存檔於2016-07-04) (英語).
- ^ Weisstein, Eric W. (編). Icosahedral group. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語).
- ^ Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons (頁面存檔備份,存於互聯網檔案館) Craig S. Kaplan
- ^ 12.0 12.1 Read, R. C.; Wilson, R. J., An Atlas of Graphs, Oxford University Press: 269, 1998
外部連結
- 埃里克·韋斯坦因, 大斜方截半二十面體 (參閱阿基米德立體) 於MathWorld(英文)
- Editable printable net of a truncated icosidodecahedron with interactive 3D view(頁面存檔備份,存於互聯網檔案館)
- The Uniform Polyhedra(頁面存檔備份,存於互聯網檔案館)
- Virtual Reality Polyhedra(頁面存檔備份,存於互聯網檔案館) The Encyclopedia of Polyhedra