Untriseptium化學符號Uts)是一種尚未被發現的化學元素原子序數是137。直到這個元素被發現、確認並確定了永久名稱之前,UntriseptiumUts分別為這個元素的暫定系統命名和化學符號。根據皮寇英語Pekka Pyykkö模型[8],其在擴展元素週期表中排列在第8週期,預測是屬於g區超錒系元素

Uts 137Uts
氫(非金屬) 氦(貴氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(貴氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(貴氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(貴氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鍀(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(貴氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鑥(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砹(類金屬) 氡(貴氣體)
鈁(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 鎿(錒系元素) 鈈(錒系元素) 鎇(錒系元素) 鋦(錒系元素) 錇(錒系元素) 鐦(錒系元素) 鎄(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為貴氣體)
Uue(預測為鹼金屬) Ubn(預測為鹼土金屬)
143 Uqt(化學性質未知) 144 Uqq(化學性質未知) 145 Uqp(化學性質未知) 146 Uqh(化學性質未知) 147 Uqs(化學性質未知) 148 Uqo(化學性質未知) 149 Uqe(化學性質未知) 150 Upn(化學性質未知) 151 Upu(化學性質未知) 152 Upb(化學性質未知) 153 Upt(化學性質未知) 154 Upq(化學性質未知) 155 Upp(化學性質未知) 156 Uph(化學性質未知) 157 Ups(化學性質未知) 158 Upo(化學性質未知) 159 Upe(化學性質未知) 160 Uhn(化學性質未知) 161 Uhu(化學性質未知) 162 Uhb(化學性質未知) 163 Uht(化學性質未知) 164 Uhq(化學性質未知) 165 Uhp(化學性質未知) 166 Uhh(化學性質未知) 167 Uhs(化學性質未知) 168 Uho(化學性質未知) 169 Uhe(化學性質未知) 170 Usn(化學性質未知) 171 Usu(化學性質未知) 172 Usb(化學性質未知)
121 Ubu(化學性質未知) 122 Ubb(化學性質未知) 123 Ubt(化學性質未知) 124 Ubq(化學性質未知) 125 Ubp(化學性質未知) 126 Ubh(化學性質未知) 127 Ubs(化學性質未知) 128 Ubo(化學性質未知) 129 Ube(化學性質未知) 130 Utn(化學性質未知) 131 Utu(化學性質未知) 132 Utb(化學性質未知) 133 Utt(化學性質未知) 134 Utq(化學性質未知) 135 Utp(化學性質未知) 136 Uth(化學性質未知) 137 Uts(化學性質未知) 138 Uto(化學性質未知) 139 Ute(化學性質未知) 140 Uqn(化學性質未知) 141 Uqu(化學性質未知) 142 Uqb(化學性質未知)
※註:119號及以後的元素並無公認的排位,上表
之排位是從理論計算的電子排布推論而得的一種
-

Uts

-[註 1]
(Uth) ← Uts → (Uto)
概況
名稱·符號·序數Untriseptium·Uts·137
元素類別未知
可能為超錒系元素
·週期·不適用·8·g
標準原子質量未知
電子排布[Og] 5g11 6f4 8s2 8p2
1/2
(推測)[3][4]
2, 8, 18, 32, 43, 22, 8, 4(推測)
Uts的電子層(2, 8, 18, 32, 43, 22, 8, 4(推測))
Uts的電子層(2, 8, 18, 32, 43, 22, 8, 4(推測))
物理性質
原子性質
氧化態根據5g元素預測
可能具有+6氧化態[5]
雜項
CAS編號55127-57-6 [6]
同位素
主條目:Uts的同位素
同位素 豐度 半衰期t1/2 衰變
方式 能量MeV 產物
無穩定的同位素[7]
Uts預測的電子排佈為[Og] 5g11 6f4 8s2 8p2
1/2
[3],對應的殼層為:2, 8, 18, 32, 43, 22, 8, 4。

有關Uts的研究多半是在討論週期表可能的終點[2][9],1948年時,理查德·費曼指出了現有理論在137號元素之後可能出現的悖論[10],也因此在部分非正式場合中會以費曼的名字稱這個元素為「Feynmanium」[11]

目前尚未有人成功合成Uts,也無法確定其原子核是否能夠存在,因為原子核滴線的不穩定性可能意味着週期表將在穩定島後不遠之處結束[12][13]。根據現有理論,僅能確定其不會存在任何穩定同位素[7]

命名

Untriseptium一詞來自於1979年IUPAC發表了對元素新命名的建議[14][15],該建議將元素以原子序數在十進位制的數字以拉丁文組合做為命名[16],其中字首「Un-」代表1,表示原子序的百位數、字根「tri-」代表3,表示原子序的十位數、字根「septi-」代表7,表示原子序的個位數[17]、字尾「-ium」表示金屬元素[18]。而費曼指出了原子序大於137的元素會出現的悖論,並認為137號元素可能是最後一個存在的元素,也因此在非正式場合中,該元素也被稱為「Feynmanium」[10],名稱來自於費曼的名字[11]

由於擴展元素週期表的排列方式並無統一,因此在皮寇英語Pekka_Pyykkö模型提出以及軌域模型普及之前,週期表無考慮到軌域能階問題時,是直接照着排列下去的,而其中一種排法Uts正好是在𨧀的下方,也因此有些網站會將「eka-dubnium」也記載為Uts的別名,意為𨧀的下方的元素[19],而根據皮寇英語Pekka Pyykkö模型,𨧀下方應為159號元素(Unpentennium,Upe)[20]。然而根據該模型預測Uts的電子排佈方式[21],其應屬於g區元素,而g區元素從第8週期開始,因此Uts在週期表中位置的上方是沒有元素的。

特徵

由於許多原子核理論的模型在原子序到137之後都會出現問題、矛盾或存在悖論,因此理論上,Uts可能為最後一個存在的元素。這些現象最早由理查德·費曼於1948年指出[22]

玻爾模型

理查德·費曼指出,根據玻爾模型,原子序大於137的元素,其內層軌域可能電子無法穩定存在[23],因爲在1s原子軌域中的電子的速度v計算如下:

 

當中Z原子序α是描述電磁力強度的精細結構常數[24]在這個計算中,任何原子序高於137的元素的1s軌域電子速度計算結果會比光速c還大[25][26],因此任何不建基於相對論的理論(如波爾模型)不足以處理這種計算。

而若將其結果轉換成動量[27]

 

對於任意高的p,我們可以找到滿足該等式的v < c。且電子的速度與原子核存在與否無關,因此此計算矛盾並不意味着Uts會是元素週期表上的最後一個元素[2]

相對論狄拉克方程式

相對論狄拉克方程式可以計算出原子的基態能量:

 

其中,m為電子靜止質量、c為光速、z為質子數、α為精細結構常數

m0表示電子靜質量,則其基態能量為:

 

當質子數為138或更大時,根號中將會出現負值,導致其值不是實數,因而導致狄拉克基態的波函數是震蕩的,並且正能譜與負能譜之間沒有間隙,正如克萊因悖論英語Klein paradox所言[28]

參見

註解

  1. ^ 原子序超出現有理論可能的上限:Z = 155[1] (Albert Khazan)、Z = 173[2]

參考文獻

  1. ^ Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements New. New York, NY: Oxford University Press. 2011: 588. ISBN 978-0-19-960563-7. 
  2. ^ 2.0 2.1 2.2 Philip Ball. Would element 137 really spell the end of the periodic table? Philip Ball examines the evidence. Chemistry World英語Chemistry World. Royal Society of Chemistry. 2010-11 [2012-09-30]. (原始內容存檔於2012-10-21). 
  3. ^ 3.0 3.1 Pyykkö, Pekka. A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 2011, 13 (1): 161–168. Bibcode:2011PCCP...13..161P. ISSN 1463-9076. doi:10.1039/C0CP01575J (英語). 
  4. ^ Makhyoun, M. A. On the electronic structure of 5g1 complexes of element 125 : a quasi-relativistic MS-Χα Study. Journal de Chimie Physique. 1988, 85: 917–924 [2021-04-25]. ISSN 0021-7689. doi:10.1051/jcp/1988850917. (原始內容存檔於2018-06-03) (英語). 
  5. ^ Fricke, B.; Greiner, W.; Waber, J. T. The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements. Theoretica Chimica Acta. 1971-09-XX, 21 (3): 235–260. ISSN 0040-5744. doi:10.1007/BF01172015 (英語). 
  6. ^ Untriseptium. CharChem. [2021-04-25]. (原始內容存檔於2021-05-15). 
  7. ^ 7.0 7.1 Untriseptium. University of Kentucky. [2021-04-25]. (原始內容存檔於2021-04-25). 
  8. ^ Schwerdtfeger, Peter; Pyykkö, Pekka. [Abteilungsexemplar] Relativistic electronic structure theory: : (dedicated to Pekka Pyykkö on the occation of his 60th birthday). Theoretical and computational chemistry 1. ed. Amsterdam [u.a.]: Elsevier. 2002 [2021-04-25]. ISBN 978-0-444-51249-9. (原始內容存檔於2021-04-26) (英語). 
  9. ^ Goswami, M. Ultimate stable element Z = 137. Indian Journal of Science and Technology. 2009-03-20, 2 (3): 1–4 [2021-04-25]. doi:10.17485/ijst/2009/v2i3.10. (原始內容存檔於2021-04-28). 
  10. ^ 10.0 10.1 Elert, Glenn. Atomic Models. The Physics Hypertextbook. [2021-04-25]. (原始內容存檔於2021-02-28) (英語). 
  11. ^ 11.0 11.1 J. Eric Slone. The Mysterious 137. fotuva.org. [2017-07-17]. (原始內容存檔於2017-07-24). 
  12. ^ transuranium element. Encyclopedia Britannica. [2021-04-25]. (原始內容存檔於2021-06-09) (英語). 
  13. ^ Ćwiok, S.; Heenen, P.-H.; Nazarewicz, W. Shape coexistence and triaxiality in the superheavy nuclei. Nature. 2005-02-XX, 433 (7027): 705–709 [2021-04-25]. Bibcode:2005Natur.433..705C. ISSN 0028-0836. PMID 15716943. doi:10.1038/nature03336. (原始內容存檔於2021-04-15) (英語). 
  14. ^ Recommendations for the Naming of Elements of Atomic Numbers Greater than 100. Pure and Applied Chemistry. 1979-01-01, 51 (2): 381–384 [2021-04-25]. ISSN 1365-3075. doi:10.1351/pac197951020381. (原始內容存檔於2021-04-26). 
  15. ^ Untriseptium. apsidium.com. 2002-09-19 [2017-07-18]. (原始內容存檔於2002-09-23). 
  16. ^ Meija, Juris. Symbols of the Elements (part III). Chemistry International (DeGruyter). 2014, 36 (4): 25–26. doi:10.1515/ci.2014.36.4.25. 
  17. ^ 137 the Cosmic Code written by the ‘hand of God’. wordpress.com. [2017-07-18]. (原始內容存檔於2022-03-27). 
  18. ^ How to Name New Chemical Elements. Chemistry International. 2016-01-01, 38 (1) [2021-04-25]. ISSN 1365-2192. doi:10.1515/ci-2016-0124. (原始內容存檔於2021-04-28). 
  19. ^ Untriseptium – Eka-dubnium/Element 137. elixirofknowledge.com. 2015-07-15 [2017-07-18]. (原始內容存檔於2021-04-15). 
  20. ^ Extended elements: new periodic table. 2010 [2017-07-17]. (原始內容存檔於2016-03-04). 
  21. ^ Fricke, Burkhard. Superheavy elements a prediction of their chemical and physical properties. Recent Impact of Physics on Inorganic Chemistry 21. Berlin, Heidelberg: Springer Berlin Heidelberg. 1975: 89–144. ISBN 978-3-540-07109-9. doi:10.1007/bfb0116498 (英語). 
  22. ^ Eggenkamp, Hans. The Halogen Elements. The Geochemistry of Stable Chlorine and Bromine Isotopes. Berlin, Heidelberg: Springer Berlin Heidelberg. 2014: 3–13. ISBN 978-3-642-28505-9. doi:10.1007/978-3-642-28506-6_1 (英語). 
  23. ^ Philip Ball. how many more chemical elements are there for us to find?. BBC. 2016-01-15 [2017-07-18]. (原始內容存檔於2021-08-16). 
  24. ^ Eisberg, R.; Resnick, R.; Sullivan, Jeremiah D. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles. Physics Today. 1975-12-XX, 28 (12): 51–52 [2021-04-25]. ISSN 0031-9228. doi:10.1063/1.3069243. (原始內容存檔於2017-12-21) (英語). 
  25. ^ When Will We Reach the End of the Periodic Table?. smithsonian. [2017-07-18]. (原始內容存檔於2022-03-24). 
  26. ^ Sam Kean. ununseptium ugly name beautiful element. slate.com. 2010-08-09 [2017-07-18]. (原始內容存檔於2021-06-14). Einstein's theory of relativity says nothing can go faster than light. If you do the math, electrons could suddenly violate the laws of relativity around element 137, untriseptium 
  27. ^ Okun, Lev B. The Concept of Mass. Physics Today英語Physics Today. 1989-06-XX, 42 (6): 31–36 [2021-04-25]. Bibcode:1989PhT....42f..31O. ISSN 0031-9228. doi:10.1063/1.881171. (原始內容存檔於2021-05-05) (英語). 
  28. ^ Greiner, Walter. Relativistic Quantum Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg. 1995. ISBN 978-3-540-99535-7. doi:10.1007/978-3-642-88082-7 (英語).