厄農映射
厄農映射(英語:Hénon map)是一種可以產生混沌現象的離散時間動態系統,其迭代表達式為:
在經典厄農映射中,參數值分別取為a = 1.4及b = 0.3。此時,系統表現出混沌現象。而當a與b取其他不同值時,系統可表現為混沌現象、陣發性現象,或收斂至周期點。通過軌道圖可以看出不同參數下系統的行為特徵。
厄農映射是由法國數學家米歇爾·厄農提出的,以此作為洛倫茨模型的龐加萊截面的簡化模型。對經典厄農映射而言,任意初始點或趨向厄農奇異吸引子,或發散至無窮大。厄農吸引子具有分形結構,其在一個方向上連續,另一個方向上則為一個康托爾集。數值計算表明經典厄農吸引子的關聯維數為1.25 ± 0.02[1],豪斯多夫維數為1.261 ± 0.003。[2]
參考文獻
- ^ P. Grassberger; I. Procaccia. Measuring the strangeness of strange attractors. Physica. 1983, 9D (1-2): 189–208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1.
- ^ D.A. Russell; J.D. Hanson; E. Ott. Dimension of strange attractors. Physical Review Letters. 1980, 45 (14): 1175. Bibcode:1980PhRvL..45.1175R. doi:10.1103/PhysRevLett.45.1175.
- M. Hénon. A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics. 1976, 50 (1): 69–77. Bibcode:1976CMaPh..50...69H. doi:10.1007/BF01608556.
- Predrag Cvitanović; Gemunu Gunaratne; Itamar Procaccia. Topological and metric properties of Hénon-type strange attractors. Physical Review A. 1988, 38 (3): 1503–1520. Bibcode:1988PhRvA..38.1503C. PMID 9900529. doi:10.1103/PhysRevA.38.1503.
- M. Michelitsch; O. E. Rössler. A New Feature in Hénon's Map. Computers & Graphics. 1989, 13 (2): 263–265 [2016-12-03]. doi:10.1016/0097-8493(89)90070-8. (原始內容存檔於2021-01-25).. Reprinted in: Chaos and Fractals, A Computer Graphical Journey: Ten Year Compilation of Advanced Research (Ed. C. A. Pickover). Amsterdam, Netherlands: Elsevier, pp. 69–71, 1998