有理同倫論

在數學中,有理同倫論是對拓撲空間的有理同倫型的研究;粗略地說,有理同倫型忽略同倫群。有理同倫論由Dennis Sullivan (1977Daniel Quillen (1969 首創。

對於單連通空間,有理同倫型等同於一種被稱作極小蘇利文代數的代數對象(的同構類);這種代數對象是滿足特定條件的有理數域上的可交換微分分次代數

有理同倫論的標準教材是(Félix, Halperin & Thomas 2001)。

有理空間

有理空間是所有同倫群皆為有理數域上的向量空間單連通空間。若   是單連通CW復形,則存在一個(在同倫等價的意義下唯一)有理空間   以及映射  ,使得   誘導的所有同倫群的同態與   取張量積後都是同構。此空間   稱作  有理化,同時也是   對於有理數的局部化,並稱作  有理同倫型。通俗的說,   的有理化是由消除   的所有同倫群中的撓子群而得到的。

蘇利文代數

蘇利文代數是有理數域   上的可交換微分分次代數;其底代數是由某一分次向量空間

 

生成的自由可交換分次代數  ,並且要求導子   滿足以下「冪零」條件:  是分次子空間   的並,其中    上為零、且   包含於  。這裡「可交換」指在分次意義上可交換,有時也稱為「超可交換」;換言之,可交換性指  

蘇利文代數是極小的  的像含於 ,其中    的所有正次子空間的直和。

可交換微分分次代數  蘇利文模型是從一蘇利文代數   代數同態,且在上同調上為同構。若  ,則   存在一個在同構意義上唯一的極小蘇利文模型。(注意:一個擁有跟   相同上同調的極小蘇利文代數不一定是   的極小蘇利文模型,還須要求上同調的同構由代數同態給出。已知有帶相同上同調代數但非同構的極小蘇利文模型的例子存在。)

拓撲空間的蘇利文極小模型

對任意拓撲空間   蘇利文定義了一個可交換微分分次代數  ,稱為   上有理係數的多項式微分形式的代數。大致地說,該代數上的元素對   的每一個奇異單純形賦予一個多項式微分形式、與面映射與退化映射兼容。通常情況下這個代數非常巨大(維數不可數),但常常可以替換成一個小得多的代數。更精確地說,與   共享同一個蘇利文極小模型的微分分次代數稱為   的一個模型,且對於單連通的空間   確定了   的有理同倫型。

  是單連通CW復形、且所有有理同調群都是有限維,則   擁有一個極小蘇利文模型  ,滿足   且所有   的維數都有限。這個蘇利文代數稱作   的蘇利文極小模型,且在同構意義上唯一。這個構造給出了這一類空間的有理同倫型與極小蘇利文代數之間的等價,並且擁有以下性質:

  • 空間的有理上同調即是其蘇利文極小模型的上同調;
  •   的不可分元素的空間即是   的有理同倫群的對偶;
  • 有理同調的懷特海德積即是導子   的「二次部分」的對偶;
  • 兩空間的有理同倫型相同當且僅當其蘇利文極小模型同構;
  • 對任意   且所有   維數有限的蘇利文代數都存在一個單連通的拓撲空間   與之對應。

 光滑流形時,   上的光滑微分形式組成的分次代數(即德拉姆復形)幾乎可以視作   的模型;更精確地說,這個代數是   的復形與實數域的張量積,因而確定了  實同倫型。同理還可更進一步定義p進同倫型以及adelic同倫型,並與有理同倫型相比較。

以上對於單連通空間的結論可以輕易延伸到冪零空間(即基本群冪零群、且對高階同倫群的作用也是冪零的空間)。對於擁有更一般基本群的空間,事情變得比較棘手,因為即使對於CW復形,並要求每一維度上的胞腔數目都有限,其高階同倫群仍可以是無限生成的。

形式空間

一個可交換微分分次代數   )是形式的  擁有一個導子為零的模型。這個條件等價於   的上同調代數(視作帶平凡導子的微分代數)本身即是   的一個模型(雖然不必是極小的模型)。這意味着形式空間的有理同倫型相當容易計算。

形式空間的例子有球面H-空間、對稱空間、凱勒流形等(Deligne et al. 1989)楔積直積都保有形式性;對於流行而言,連通和也保有形式性。

另一方面,冪零流形幾乎全非形式的:任意形式的緊冪零流形都是   維環面(Hasegawa 1975)。非形式的緊冪零流形最簡單的例子是海森伯流形  ,即海森伯群在其整係數矩陣子群上的商。辛流形也不一定是形式的:最簡單的例子是小平-瑟斯頓流形(即海森伯流形與圓的乘積)。Babenko & Taimanov (2000) 進一步給出了非形式的單連通辛流形。

非形式性常常Massey積檢測。事實上,如果微分分次代數   是形式的,那麼其所有(高階的)Massey積都必須為零。而逆命題並不成立:形式性大致等價於其Massey積「一致」為零。博羅梅奧連環英語Borromean rings的補是一個非形式空間:它支持一個非平凡的三次Massey積。

Halperin & Stasheff (1979) 給出了一個判定可交換微分分次代數的形式性的算法。

例子

  •   是奇維球面、維數為  ,那麼它的極小蘇利文模型由單個度數為   生成元   生成,滿足  ,並且帶有一組由元素    組成的基底。
  •   是偶維球面、維數為  ,那麼它的極小蘇利文模型由兩個度數分別為    的生成元    生成,滿足   ,並且帶有一組基底 ,其中箭頭代表導子的作用。
  •   是(復)維數為   的復射影空間,那麼它的極小蘇利文模型由兩個度數分別為    的生成元    生成,滿足   ,並且帶有一組基底 ,其中箭頭代表導子的作用。
  •   有四個元素  ,度數分別是2,3,3,4,且滿足      。這個代數是一個非形式的極小蘇利文代數,其上同調代數僅在2、3、6維非平凡,分別由   生成。任意從   到其上同調代數的同態都將   映到 0,並將   映到   的倍數,因此必定將   映到 0。因此,  不是其上同調代數的模型。它們各自對應的拓撲空間因而擁有相同的有理上同調環而相異的有理同倫型。注意到   是Massey積   中的元素。

外部連結

參考文獻