場效電晶體

場效應管(英語:field-effect transistor,縮寫:FET)是一種通過電場效應控制電流的電子元件。

大功率N溝道場效應晶體管

它依靠電場去控制導電溝道形狀,因此能控制半導體材料中某種類型載流子的溝道的導電性。場效應晶體管有時被稱為「單極性晶體管」,以它的單載流子型作用對比雙極性晶體管。由於半導體材料的限制,以及曾經雙極性晶體管比場效應晶體管容易製造,場效應晶體管比雙極性晶體管要晚造出,但場效應晶體管的概念卻比雙極性晶體管早。[1]

歷史

場效應電晶體於1925年由Julius Edgar Lilienfeld和於1934年由Oskar Heil分別發明,但是實用的器件一直到1952年才被製造出來(結型場效應電晶體)。1960年Dawan Kahng發明了金屬氧化物半導體場效應電晶體,從而大部分代替了JFET,對電子行業的發展有着深遠的意義。

原理

電極

 
一個n型MOSFET的橫截面

所有的FET都有柵極(gate)、漏極(drain)、源極(source)三個端,分別大致對應雙極性電晶體的基極(base)、集電極(collector)和發射極(emitter)。除了結型場效應管外,所有的FET也有第四端,被稱為體(body)、基(base)、塊體(bulk)或襯底(substrate)。這個第四端可以將晶體管調製至運行;在電路設計中,很少讓體端發揮大的作用,但是當物理設計一個集成電路的時候,它的存在就是重要的。在圖中柵極的長度(length)L,是指源極和漏極的距離。寬度(width)是指晶體管的範圍,在圖中和橫截面垂直。通常情況下寬度比長度大得多。長度1微米的柵極限制最高頻率約為5GHz,0.2微米則是約30GHz。

這些端的名稱和它們的功能有關。柵極可以被認為是控制一個物理柵的開關。這個柵極可以通過製造或者消除源極和漏極之間的溝道,從而允許或者阻礙電子流過。如果受一個外加的電壓影響,電子流將從源極流向漏極。體很簡單的就是指柵極、漏極、源極所在的半導體的塊體。通常體端和一個電路中最高或最低的電壓相連,根據類型不同而不同。體端和源極有時連在一起,因為有時源也連在電路中最高或最低的電壓上。當然有時一些電路中FET並沒有這樣的結構,比如級聯傳輸電路和串疊式電路

組成

FET由各種半導體構成,目前是最常見的。大部分的FET是由傳統塊體半導體製造技術製造,使用單晶半導體硅片作為反應區,或者溝道。

大部分的不常見體材料,主要有非晶硅多晶硅或其它在薄膜晶體管中,或者有機場效應晶體管中的非晶半導體。有機場效應晶體管基於有機半導體,常常用有機柵絕緣體和電極。

場效應晶體管的類型

 
標準電壓下的耗盡型場效應管。從左到右依次依次為:結型場效應管,多晶硅金屬—氧化物—半導體場效應管,雙柵極金屬—氧化物—半導體場效應管,金屬柵極金屬—氧化物—半導體場效應管,金屬半導體場效應管。  耗盡層 ,  電子 ,  空穴 ,  金屬 ,  絕緣體 . 上方:源極,下方:漏極,左方:柵極,右方:主體。電壓導致通道形成的細節沒有畫出

摻雜FET(解釋如下)的溝道用來製造N型半導體P型半導體。在耗盡模式的FET下,漏和源可能被摻雜成不同類型至溝道。或者在提高模式下的FET,它們可能被摻雜成相似類型。場效應晶體管根據絕緣溝道和柵的不同方法而區分。FET的類型有:

  • DEPFET(Depleted FET)是一種在完全耗盡基底上製造,同時用為一個感應器、放大器和記憶極的FET。它可以用作圖像(光子)感應器。
  • DGMOFET(Dual-gate MOSFET)是一種有兩個柵極的MOSFET。
  • DNAFET是一種用作生物感應器的特殊FET,它通過用單鏈DNA分子製成的柵極去檢測相配的DNA鏈。
  • FREDFET(Fast Recovery Epitaxial Diode FET)是一種用於提供非常快的重啟(關閉)體二極管的特殊FET。
  • HEMT(高電子遷移率晶體管,High Electron Mobility Transistor),也被稱為HFET(異質結場效應晶體管,heterostructure FET),是運用帶隙工程在三重半導體例如AlGaAs中製造的。完全耗盡寬帶隙造成了柵極和體之間的絕緣。
  • IGBT(Insulated-Gate Bipolar Transistor)是一種用於電力控制的器件。它和類雙極主導電溝道的MOSFET的結構類似。它們一般用於漏源電壓範圍在200-3000伏的運行。功率MOSFET仍然被選擇為漏源電壓在1到200伏時的器件.
  • ISFET是離子敏感的場效應晶體管(Ion-Sensitive Field Effect Transistor),它用來測量溶液中的離子濃度。當離子濃度(例如pH值)改變,通過晶體管的電流將相應的改變。
  • JFET用相反偏置的p-n結去分開柵極和體。
  • MESFET(Metal-Semiconductor FET)用一個肖特基勢壘替代了JFET的PN結;它用於GaAs和其它的三五族半導體材料。
  • MODFET(Modulation-Doped FET)用了一個由篩選過的活躍區摻雜組成的量子阱結構。
  • MOSFET用一個絕緣體(通常是二氧化硅)於柵和體之間。
  • NOMFET是納米粒子有機記憶場效應晶體管(Nanoparticle Organic Memory FET)。[1]頁面存檔備份,存於網際網路檔案館
  • OFET是有機場效應晶體管(Organic FET),它在它的溝道中用有機半導體。

FET工作

 
n溝道結型場效應管的I–V特性和輸出曲線圖

柵極電壓對電流的影響

 
計算機仿真展現的納米線MOSFET中反型溝道的形成(電子密度的變化)。閾值電壓在0.45V左右。

FET通過影響導電溝道的尺寸和形狀,控制從源到漏的電子流(或者空穴流)。溝道是由(是否)加在柵極和源極的電壓而創造和影響的(為了討論的簡便,這默認體和源極是相連的)。導電溝道是從源極到漏極的電子流。

耗盡模式

在一個n溝道"耗盡模式"器件,一個負的閘源電壓將造成一個耗盡區去拓展寬度,自邊界侵占溝道,使溝道變窄。如果耗盡區擴展至完全關閉溝道,源極和漏極之間溝道的電阻將會變得很大,FET就會像開關一樣有效的關閉(如右圖所示,當柵極電壓很低時,導電溝道幾乎不存在)。類似的,一個正的柵源電壓將增大溝道尺寸,而使電子更易流過(如右圖所示,當柵極電壓足夠高時,溝道導通)。

增強模式

相反的,在一個n溝道"增強模式"器件中,一個正的柵源電壓是製造導電溝道所必需的,因為它不可能在晶體管中自然的存在。正電壓吸引了導體中的自由移動的電子向柵極運動,形成了導電溝道。但是首先,充足的電子需要被吸引到柵極的附近區域去對抗加在FET中的摻雜離子;這形成了一個沒有運動載流子的被稱為耗盡區的區域,這種現象被稱為FET的閾值電壓。更高的柵源電壓將會吸引更多的電子通過柵極,則會製造一個從源極到漏極的導電溝道;這個過程叫做"反型"。

漏極源極電壓對電流的影響

無論是增強模式還是耗盡模式器件,在漏源電壓遠小於柵源電壓時,改變柵極電壓將改變溝道電阻,漏電流將和漏電壓(相對於源極的電壓)成正比。在這種模式下FET將像一個可變電阻一樣運行,被稱為"線性模式"或"歐姆模式"。[2][3]

如果漏源電壓增長了,由於源漏電勢的梯度,它將造成溝道形狀上的一個很大的非對稱改變。在溝道的漏末端,反型區域的形狀變成夾斷(pinched-off)。如果漏源電壓進一步增長,溝道的夾斷點將開始離開漏極,向源極移動。這種FET被稱為"飽和模式";[4] 一些作者把它稱為"有源模式",為了更好的和雙極晶體管操作區對比。[5][6] 當需要放大的時候一般用飽和模式或者歐姆模式與飽和模式的中間模式。中間模式有時被認為是歐姆或線性模式的一部分,儘管漏電流並不隨着漏電壓大致線性增長。

儘管在飽和模式下,柵源電壓形成的導電溝道不再和源相連,載流子的流動並沒有被禁止。重新考慮n溝道器件,耗盡區存在於p型體中的導電通道和漏、源區域周圍。如果受到漏源電壓向漏方向的吸引,組成溝道的電子將通過耗盡區自由的從溝道中移走。耗盡區將沒有載流子,而有近似於的電阻。任何漏源電壓的增長將增加漏極到夾斷點的距離,相對於耗盡區增加的電阻和加在漏源上的電壓成正比。這種正比的變化造成漏源電流保持相對固定的對漏源電壓的獨立變化,這和線性模式運行有所不同。儘管在飽和模式下,FET就像一個穩恆電流源而不是電阻,它可以在電壓放大器中大多數有效的運用。在這種情況下,柵源電壓決定了通過溝道的固定電流的大小。

用途

IGBT在開關內燃機點燃管中有用。快速開關和電壓阻礙能力在內燃機中是非常重要的。

大部分常用的FET是金屬氧化物半導體場效電晶體互補式金屬氧化物半導體過程技術是現代數字集成電路的基礎。這個過程技術排列了相連成串的p溝道MOSFET和n溝道MOSFET(通常在提高模式),使得當一個開,另一個則關。

MOSFET中柵和溝道之間的脆弱絕緣層使得它在操作中容易受到靜電損壞。器件在合適的設計電路中安裝後則通常不成問題[來源請求]

在FET中,當在線性模式下運行,電子能向各個方向流動通過溝道。當器件是特別的(但並不是經常的)從源極到漏極的對稱製造,漏極和源極的名稱變化有時是隨機的。這使得FET適合用來開關路程間的模擬信號(多路技術)。例如,由這一概念,固體混合板就可以被構造出。

參考文獻

  1. ^ 1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated頁面存檔備份,存於網際網路檔案館(英文)
  2. ^ C Galup-Montoro & Schneider MC. MOSFET modeling for circuit analysis and design. London/Singapore: World Scientific. 2007: 83 [2010-04-11]. ISBN 981-256-810-7. (原始內容存檔於2010-01-12). 
  3. ^ Norbert R Malik. Electronic circuits: analysis, simulation, and design. Englewood Cliffs, NJ: Prentice Hall. 1995: 315–316 [2010-04-11]. ISBN 0-02-374910-5. (原始內容存檔於2009-04-27). 
  4. ^ RR Spencer & Ghausi MS. Microelectronic circuits. Upper Saddle River NJ: Pearson Education/Prentice-Hall. 2001: 102 [2010-04-11]. ISBN 0-201-36183-3. (原始內容存檔於2010-01-12). 
  5. ^ A. S. Sedra and K.C. Smith. Microelectronic circuits Fifth Edition. New York: Oxford. 2004: 552 [2010-04-11]. ISBN 0-19-514251-9. (原始內容存檔於2009-02-04). 
  6. ^ PR Gray, PJ Hurst, SH Lewis & RG Meyer. Analysis and design of analog integrated circuits Fourth Edition. New York: Wiley. 2001: §1.5.2 p. 45 [2010-04-11]. ISBN 0-471-32168-0. (原始內容存檔於2009-04-28). 

參見

外部連結