用户:胡葡萄/维基数学家/条目质量提升计划

欢迎维基数学家参与数学条目质量提升计划,齐齐提升数学条目质量!

计画制度

动员令

动员令是组织维基数学家参与提升数学条目质量的活动。如完成动员令,可取得条目质量提升计划奖章

发起

第一次动员令
要求
  • 扩充最少10个数学小小作品和最少5个数学小作品
报名
完成

你知道吗?


编辑 | 数学Dyk存档 | 创建新条目 | 更多新条目...

优良条目

 
导数(英语:Derivative)是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数 的自变量在一点 上产生一个增量 时,函数输出值的增量与自变量增量 的比值在 趋于0时的极限如果存在,即为  处的导数,记作   。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。对于可导的函数  也是一个函数,称作 导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。