算术-几何平均值不等式

非負實數列表的算術平均值大於或等於同一列表的幾何平均值的狀態

算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现算术平均数几何平均数之间恒定的不等关系。设个非负实数,它们的算术平均数,它们的几何平均数。算术-几何平均值不等式表明,对任意的非负实数

等号成立当且仅当

通常用于两个数之间,设这两个数为,也就是

算术-几何平均值不等式仅适用于非负实数,是对数函数凹性的体现,在数学自然科学工程科学以及经济学等其它学科都有应用。

算术-几何平均值不等式有时被称为平均值不等式(或均值不等式),其实后者是一组更广泛的不等式。

例子

 的情况,设: ,那么

 

可见 

历史上的证明

历史上,算术-几何平均值不等式拥有众多证明。 的情况很早就为人所知,但对于一般的 ,不等式并不容易证明。1729年,英国数学家麦克劳林最早给出一般情况的证明,用的是调整法,然而这个证明并不严谨,是错误的。

柯西的证明

1821年,法国数学家柯西在他的著作《分析教程》中给出一个使用逆向归纳法的证明[1]

命题 :对任意的 个正实数  

 时, 显然成立。假设 成立,那么 成立。证明:对于 个正实数 

 
 
 

假设 成立,那么 成立。证明:对于 个正实数 ,设  ,那么由于 成立, 

但是  ,因此上式正好变成

 

也就是说 

综上可以得到结论:对任意的自然数 ,命题 都成立。这是因为由前两条可以得到:对任意的自然数 ,命题 都成立。因此对任意的 ,可以先找 使得 ,再结合第三条就可以得到命题 成立了。

归纳法的证明

使用常规数学归纳法的证明则有乔治·克里斯托英语George Chrystal(George Chrystal)在其著作《代数论》(Algebra)的第二卷中给出的[2]

由对称性不妨设  中最大的,由于 ,设 ,则 ,并且有 

根据二项式定理

 
 

于是完成了从  的证明。

此外还有更简洁的归纳法证明[3]

 的情况下有不等式  成立,于是:

 

所以 ,从而有 

基于琴生不等式的证明

注意到几何平均数 实际上等于 ,因此算术-几何平均不等式等价于:

 

由于对数函数是一个凹函数,由琴生不等式可知上式成立。

基于排序不等式的证明

 ,于是有 ,再作代换 ,运用排序不等式得到:

 

于是得到 ,即原不等式成立。

此外还有基于伯努利不等式或借助调整法、辅助函数求导和加强命题的证明。

推广

算术-几何平均不等式有很多不同形式的推广。

加权算术-几何平均不等式

不仅“均匀”的算术平均数和几何平均数之间有不等式,加权的算术平均数和几何平均数之间也有不等式。设  为正实数,并且 ,那么:

 

加权算术-几何平均不等式可以由琴生不等式得到。

矩阵形式

算术-几何平均不等式可以看成是一维向量的系数的平均数不等式。对于二维的矩阵,一样有类似的不等式: 对于系数都是正实数的矩阵

 

  ,那么有:

 

也就是说:对 个纵列取算术平均数,它们的几何平均小于等于对 个横行取的 个几何平均数的算术平均。

极限形式

也称为积分形式:对任意在区间 上可积的正值函数 ,都有

 

这实际上是在算术-几何平均值不等式取成 后,将两边的黎曼和中的 趋于无穷大后得到的形式。

算数-几何-调和平均值不等式

若再规定 的调和平均数 

则有

 

且等号依旧成立当且仅当 

证明由算数-几何平均值不等式知

 

 

 

且等号成立于

 

 

参见

参考来源

  1. ^ Augustin-Louis Cauchy, Cours d'analyse de l'École Royale Polytechnique, premier partie, Analyse algébrique,页面存档备份,存于互联网档案馆) Paris, 1821. p457.
  2. ^ George Chrystal, Algebra:An Elementary Text-Book, Part II页面存档备份,存于互联网档案馆), Chapter XXIV.p46.
  3. ^ P. H. Diananda , A Simple Proof of the Arithmetic Mean Geometric Mean Inequality ,The American Mathematical Monthly, Vol. 67, No. 10 (Dec., 1960), pp. 1007
  • 匡继昌,《常用不等式》,山东科技出版社。
  • 李胜宏,《平均不等式与柯西不等式》,华东师大出版社。
  • 莫里斯·克莱因(Morris Kline),张理京 张锦炎 江泽涵 译,《古今数学思想》,上海科学技术出版社。
  • 李兴怀,《学科奥林匹克丛书·高中数学》,广东教育出版社。