幂平均(英语:power mean),又称广义平均(英语:generalized mean)或赫尔德平均(英语:Hölder mean),是一族从数列到实数的函数。幂平均函数的特殊情况包括毕达哥拉斯平均(算术、几何、调和平均),因此可视为毕达哥拉斯平均的一种推广。
定义
若 是一非零实数,可定义非负实数
的p次幂平均为
-
幂平均在 等于几何平均(幂平均函数 收敛于0时的收敛于几何平均)
-
性质
- 和所有平均一样,幂平均是各参数 的一次齐次函数。即若 是一个正实数,则 指数为 的幂平均等于 倍 的幂平均。
- 与几何算术平均一样,这种平均的计算可以分解成同样大小的子块来计算。
-
幂平均不等式
一般地,如果 ,则 且这两个平均相等当且仅当 。这由事实
-
得出,上述不等式可由琴生不等式证明。
特别地,对 ,幂平均不等式蕴含了毕达哥拉斯平均不等式以及算术几何平均不等式。
特例
|
最小值
|
|
调和平均
|
|
几何平均
|
|
算术平均
|
|
平方平均
|
|
立方平均
|
|
最大值
|
幂平均不等式的证明
最小值与最大值
此段最后将证明当指数 趋于 与 ,其幂平均的幂平均分别趋于最小值与最大值。定义指数为 与 的幂平均为最大值与最小值。从而应该有:
-
对最大值证明如下:不失一般性假设序列 非减且全不为零。则不等式等价于:
-
两边取 次幂,我们得到不等式(取决于 的符号):
-
若 为 ≤, 若 为 ≥。
两边同时减去 我们得到:
-
除以 :
-
不为零,从而:
-
减去 剩下:
-
这是显然的,因为 大于或等于任何 ,从而
-
对最小值证明几乎相同,只不过将 、 换作 、 ,证毕。
另一方面,当 大于零时,由简单的推理以及上面的不等式有
-
令 趋于 时,左边同样趋于 ,由夹逼定理知中间项幂平均趋于 。最小值的证明完全类似。
广义 f-平均
幂平均可以推广到更一般的广义 f-平均:
-
例如这包括了几何平均而勿需使用极限。幂平均是由 得到的。
应用
参见条目
外部链接