元启发算法

元启发算法(英文:metaheuristic), 又称 万能启发式演算法万用启发式演算法。在计算机科学和数学优化中,元启发是一种高级的程序或启发式算法,专门用于搜索、生成或选取一个启发式结果(局部搜索算法),该结果可以为一个最优化问题提供足够好的求解,尤其适用于信息不完备或者计算能力受限时的最优化问题。

特色

元启发算法(metaheuristic),meta 代表其比一般启发式演算法在搜寻能力上更为高阶。而 heuristic 则代表其算法能够在一个合理的计算成本内找到一个接近真实最佳解的解,但启发式演算法并不能够保证其解的可行性与最佳性。[1] 式通常是使用大量的试误以在庞大的解空间中搜寻最佳解。

元启发算法皆在全域搜索与区域搜索中取得权衡,若算法著重区域搜索能力则容易落入区域最佳解陷阱,若著重全域搜索则可能无法收敛解。

演算法

仿生元启发式演算法

该类型演算法以生物的习性或群体生物行为作为灵感加以发展成为演算法。

参考文献

  1. ^ Zahra Beheshti; Siti Mariyam Hj. Shamsuddin. A Review of Population-based Meta-Heuristic Algorithm (PDF). Int. J. Advance. Soft Comput. Appl. March,2013, 5 (1): 1–35. 
  2. ^ Yeh, Wei-Chang. A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert Systems with Applications. 2009-07-01, 36 (5): 9192–9200. ISSN 0957-4174. doi:10.1016/j.eswa.2008.12.024 (英语). 
  3. ^ Yeh, Wei-Chang. An improved simplified swarm optimization. Knowledge-Based Systems. 2015-07-01, 82: 60–69. ISSN 0950-7051. doi:10.1016/j.knosys.2015.02.022 (英语). 
  4. ^ Geem, Z. W.; Kim, J. H.; Loganathan, G. V. A new heuristic optimization algorithm: harmony search. simulation. 2001, 76 (2): 60–68 [2021-03-15]. (原始内容存档于2020-10-17). 
  5. ^ Eskandar, Hadi; Sadollah, Ali; Bahreininejad, Ardeshir; Hamdi, Mohd. Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures. 2012-11-01,. 110-111: 151–166. ISSN 0045-7949. doi:10.1016/j.compstruc.2012.07.010 (英语). 
  6. ^ Chen, Jian; Cai, Hui; Wang, Wei. A new metaheuristic algorithm: car tracking optimization algorithm. Soft Computing. 2018-06-01, 22 (12): 3857–3878. ISSN 1433-7479. doi:10.1007/s00500-017-2845-7 (英语). 
  7. ^ 7.0 7.1 Pang, Shinsiong; Chen, Mu-Chen. Optimize railway crew scheduling by using modified bacterial foraging algorithm. Computers & Industrial Engineering. 2023-06-01, 180. ISSN 0360-8352. doi:10.1016/j.cie.2023.109218 (英语). 
  8. ^ Yang, X. S.; Deb, S. Cuckoo search via Lévy flights. IEEE. 2009: 210–214. doi:10.1109/NABIC.2009.5393690. 
  9. ^ Yang, X. S. A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). 2010: 65–74 [2021-03-15]. (原始内容存档于2021-03-08). 
  10. ^ Xin-She Yang. Nature-inspired Metaheuristic Algorithms. Luniver Press. 2010: 5–. ISBN 978-1-905986-28-6. 
  11. ^ Ruiqing Zhao; Wansheng Tang. Monkey algorithm for global numerical optimization. Journal of Uncertain Systems. 2008, 2 (3): 165–176. 
  12. ^ Yazdani, Maziar; Jolai, Fariborz. Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm. Journal of Computational Design and Engineering. 2016-01-01, 3 (1): 24–36. ISSN 2288-5048. doi:10.1016/j.jcde.2015.06.003. 
  13. ^ D Karaboga. An idea based on honey bee swarm for numerical optimization. Technical report-tr06. 2005, 200: 1–10. 
  14. ^ Liang, Yun-Chia; Josue Rodolfo Cuevas Juarez. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm. Engineering Optimization. 2016, 48 (1): 73–93. 
  15. ^ Wang, Gai-Ge. Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing. 2018-06-01, 10 (2): 151–164. ISSN 1865-9292. doi:10.1007/s12293-016-0212-3 (英语). 
  16. ^ Abedinia, Oveis; Amjady, Nima; Ghasemi, Ali. A new metaheuristic algorithm based on shark smell optimization. Complexity. 2016, 21 (5): 97–116. ISSN 1099-0526. doi:10.1002/cplx.21634 (英语). 
  17. ^ Wang, Gai-Ge; Deb, Suash; Coelho, Leandro Dos Santos. Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. International Journal of Bio-Inspired Computation. 2018-01-01, 12 (1): 1–22. ISSN 1758-0366. doi:10.1504/IJBIC.2018.093328. 
  18. ^ Harifi, Sasan; Khalilian, Madjid; Mohammadzadeh, Javad; Ebrahimnejad, Sadoullah. Emperor Penguins Colony: a new metaheuristic algorithm for optimization. Evolutionary Intelligence. 2019-06-01, 12 (2): 211–226. ISSN 1864-5917. doi:10.1007/s12065-019-00212-x (英语). 
  19. ^ Ebrahimi, A.; Khamehchi, E. Sperm whale algorithm: An effective metaheuristic algorithm for production optimization problems. Journal of Natural Gas Science and Engineering. 2016-02-01, 29: 211–222. ISSN 1875-5100. doi:10.1016/j.jngse.2016.01.001 (英语). 
  20. ^ Mousavirad, Seyed Jalaleddin; Ebrahimpour-Komleh, Hossein. Human mental search: a new population-based metaheuristic optimization algorithm. Applied Intelligence. 2017-10-01, 47 (3): 850–887. ISSN 1573-7497. doi:10.1007/s10489-017-0903-6 (英语). 
  21. ^ Faramarzi, Afshin; Heidarinejad, Mohammad; Mirjalili, Seyedali; Gandomi, Amir H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Systems with Applications. 2020-08-15, 152: 113377. ISSN 0957-4174. doi:10.1016/j.eswa.2020.113377 (英语). 
  22. ^ A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Computers & Mathematics with Applications. 2010-10-01, 60 (7): 2087–2098 [2021-03-22]. ISSN 0898-1221. doi:10.1016/j.camwa.2010.07.049. (原始内容存档于2021-04-23) (英语). 
  23. ^ Duman, Ekrem; Uysal, Mitat; Alkaya, Ali Fuat. Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Information Sciences. 2012-12-25, 217: 65–77 [2021-03-22]. ISSN 0020-0255. doi:10.1016/j.ins.2012.06.032. (原始内容存档于2012-12-19) (英语).