User:Tenpages/图 (数学)
在离散数学中,图(Graph)是用于表示物体与物体之间存在某种关系的结构。数学抽象后的“物体”称作节点或顶点(英語:Vertex,node或point),节点间的相关关系则称作边。[1]在描绘一张图的时候,通常用一组点或小圆圈表示节点,其间的边则使用直线或曲线。
图中的边可以是有方向或没有方向的。例如在一张图中,如果节点表示聚会上的人,而边表示两人曾经握手,则该图就是没有方向的,因为甲和乙握过手也意味着乙一定和甲握过手。相反,如果一条从甲到乙的边表示甲欠乙的钱,则该图就是有方向的,因为“曾经欠钱”这个关系不一定是双向的。前一种图称为无向图,后一种称为有向图。
图是图论中的基本概念。1878年,詹姆斯·西尔维斯特首次使用“图”这一名词:他用图来表示数学和化学分子结构之间的关系(他称为“化学图”,英語:chemico-graphical image)。[2][3]
定义
在图论中,图的定义有很多。下面是一些比较基本的定义方式以及与它们相关的数学结构。
图
一张图(为了和有向图区分,也称无向图;为了和多重图区分,也称简单图)[4][5]是一个二元组G = (V, E),其中集合V中的元素称为节点,集合E中的元素是两个节点组成的无序对,称为边。集合V称为点集,E称为边集。
一条边 上的两个节点x和y称作这条边的顶点或端点;也说这条边连接了节点x和y,或这条边与x和y关联(英語:incident)。一个节点可以不属于任何边,即它不与任何节点相连。由于 是无序对, 和 表示的是同一个元素。
更一般地,多重图的定义中允许同一对节点之间存在多条不同的边。在特定语境中,多重图也可以直接称作图。[6][7]此时,在上面的定义中,集合E应该为多重集。
有时,图的定义中允许自环(简称环,英語:loop),即一条连接一个节点和其自身的边。允许自环的图也称为自环图。
点集V一般是有限集;这意味着边集E也是有限集(不考虑多重图)。相对地,无限图中的点集可以是无限的。然而,由于有限图中的结论大多不能延伸到无穷图,无穷图通常更被视为一种特殊的二元关系。
一个点集为空集的图称为空图(因此边集也是空集)。图的阶(英語:order)是指其中节点的数量,即|V|。图的边数是指其边的数量,即|E|。图的大小(size)一般也指图的边数。但在一些语境中,例如描述算法复杂度的时候,图的大小是指|V|+|E|(否则非空图的大小也有可能是0)。节点的度(英語:degree或valency)是指连接到该节点的边的数量;对于允许自环的图,环要算做两条边(因为两端都连接到这个节点)。
如果一个图的阶是n,则其节点的度最大可能取n-1(对于允许自环的图则是n),而边最多可能有n(n − 1)/2条(对于允许自环的图则是n(n + 1)/2)。
在图的定义中,边的概念定义了节点上的一个对称关系,即“邻接”关系(英語:adjacency relation)。具体地说,对于两个节点x和y,如果 是一条边,则称它们是邻接的。一张图因此可以用其邻接矩阵A来表示,即一个 的矩阵,其中每个元素Aij表示节点i和j之间的边的数量。对于一个简单图,总有 ,分别表示“不相连”和“相连”,而 (即一条边的两个顶点不能相同)。允许自环的图上 的取值可以是非负整数,而多重图则允许任何 的取值都是非负整数。无向图的邻接矩阵是对称阵( )。
有向图
边为有方向的图称作有向图(英語:directed graph或digraph)。
有向图的一种比较严格的定义[8]是这样的:一个二元组 ,其中
- 是节点的集合;
- 是边(也称为有向边,英語:directed edge或directed link;或弧,英語:arcs)的集合,其中的元素是节点的有序对。
为了和多重图区分,这样的有向图也称为有向简单图。
在从 到 的边 上,节点 和 称作这条边的顶点,其中 是起点或尾(英語:tail), 是终点或头。[9]也说这条边连接了节点 和 、这条边与节点 和 关联。一张有向图中的节点可以不属于任何一条边。边 称为边 的反向边。
节点的出度(英語:out-degree)是指起点为该节点的边的数量;节点的入度(英語:in-degree)是指终点为该节点的边的数量。
更一般地,如果一张有向图允许多条头尾都相同的边,则称这样的图为有向多重图,这样的边称为多重边。一种允许多重边的的有向图定义方法如下[8]:一个有向图是这样的三元组 :
- 是节点的集合;
- 是边的集合;
- 是一个关联函数,将每条边映射到一个由顶点组成的有序对上(即一条边被按顺序关联到两个顶点)。
自环是指一条起点和终点相同的边。前面的两个定义都不允许自环,因为若节点 上有一个自环,则边 存在;但这样的边不在 中。因此,如果要允许自环,则上面的定义要做修改:对于有向简单图, 的定义应该修改为 ;对于有向多重图, 的定义应该修改为 。为了避免定义不清,这样的图分别称作允许自环的有向简单图或允许自环的有向多重图(英語:quiver)。
在允许自环的有向简单图 中,边是一个 上的齐次关系 ,称作 上的邻接关系。 对于顶点是 和 的边 ,我们说 和 是彼此邻接的,记作 。
混合图
边既可以有向、也可以无向的图称作混合图。混合简单图是一个多元组G = (V, E, A),而混合多重图则是多元组G = (V, E, A, ϕE, ϕA),其中V、E(无向边集)、A(有向边集)、ϕE、ϕA的定义可以参考前面的无向图和有向图定义。在此定义下,有向图和无向图是混合图的特殊情况。
赋权图
赋权图(英語:weighted graph,也称加权图、网络(英語:network))[10][11]是指每条边都对应有一个数字(即“权重”,weight)的图。[12]根据具体问题,权重可以表示诸如费用、长度或容量等意义。这样的图会出现在最短路径问题和旅行商问题等问题中。
基本术语
- 子图(subgraph):对于圖 和图 ,若 且 ,则称 是 的子图。
- 生成子图(spanning subgraph):指满足条件 的 的子图 。
- 链(chain或walk)、轨迹(trail)、路径(path):链是顶点 和边 交替出现的序列 称作一个长度为k的链,其中 和 为其端点,其余顶点为内部点。所有边都不相同的链称为轨迹(简称迹)。所有顶点都不相同的轨迹称为路径(简称路)。在有向图中,若链(迹、路)的方向和其中每条边的方向一致,则称其为有向链(迹、路)。[13]
- 两端点相同的链和迹分别称为闭链(或环,cycle)、闭迹(或回路,circuit)。
- 距離(Distance): 从頂點 出發到頂點 的最短路徑若存在,則此路徑的長度稱作從 到 的距離。
特殊的图
正则图
正则图是指每个节点的邻居(英語:neighbor)数量都相同的图,即每个节点的度都相同的图。节点的度为k的正则图也称作k-正则图。
完全图
完全图(英語:complete graph)是指每对节点之间都有一条边相连的图。一张完全图包含简单图所有可能出现的边。
有限图
有限图(英語:finite graph)是指点集和边集是有限集的图。否则,则称为无限图。在不加说明的情况下,图论中讨论的图大多是有限图。
连通图
在无向图中,如果存在x和y之间的路径,则称此两节点的无序对 是连通的;否则,则称此两点是非联通的。
连通图是指每对节点都连通的无向图。否则,则称图是非连通图。
在有向图中,如果存在x和y之间的有向路径,则称此两节点的有序对 是强连通的。此外,若将图中的所有边都换为无向边,得到的无向图中存在x和y之间的路径,则称此两节点是弱连通的。否则,则称此两点是非联通的。
强连通图是指每对节点都强连通的有向图。此外,弱连通图是指每对节点都弱联通的有向图。否则,则称图是非连通图。
对于一张图,若不存在大小为k − 1的点集或边集,使得从图中移除该集合后,图就变为非连通图,则称该图是k-点连通图或k-边连通图。k-点连通图通常也简称k-连通图。
二分图
二分图(英語:bipartite graph)是指这样的简单图:其点集可以被划分称两个集合W和X,其中W中的任意两个节点之间没有边相连,X中的任意两个节点之间也没有边相连。二分图是点着色色数为2的图。
若一张图的点集是两个集合W和X的无交并,使得W中的任意节点都和X中的所有节点邻接,且W或X之内没有边,则称此图是[[[完全二分图]]]。
平面图
平面图是指可以将其节点和边画在平面上,而没有两边相交的图。
循环图
阶为n≥3的循环图(英語:cycle graph)或环形图(英語:circular graph)是指其节点可以列为v1, v2, …, vn,使得图中的边为 ,其中i=1, 2, …, n − 1,以及 。循环图的另一种定义是所有点的度都为2的连通图。如果循环图是另一个图的子图,则它是那个图中的一个环。
树和森林
树是指任意两点之间都有且仅有一条路径的无向图。等价地,树是一个连通无环无向图。
森林是指任意两点之间至多仅有一条路径的无向图。等价地,森林是一个无环无向图,或一组树的无交并。
其它特殊的图
一些进阶的特殊图包括:
例子
图运算
图上可以进行一些运算或变换,使一个图变为另一个图:
图的推广
在超图中,允许一条边连接多于两个节点。
无向图可以看作是由1-单纯形(边)和0-单纯形(节点)组成的单纯复形。由此,复形成为图的推广,其中允许维度更高的单纯形。
图可以看作是一种拟阵。
参见
参考资料
脚注
- ^ Trudeau, Richard J. Introduction to Graph Theory Corrected, enlarged republication. New York: Dover Pub. 1993: 19 [8 August 2012]. ISBN 978-0-486-67870-2.
A graph is an object consisting of two sets called its vertex set and its edge set.
- ^ See:
- J. J. Sylvester (February 7, 1878) "Chemistry and algebra," Nature, 17 : 284. doi:10.1038/017284a0. From page 284: "Every invariant and covariant thus becomes expressible by a graph precisely identical with a Kekuléan diagram or chemicograph."
- J. J. Sylvester (1878) "On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, – with three appendices," American Journal of Mathematics, Pure and Applied, 1 (1) : 64–90. doi:10.2307/2369436. . The term "graph" first appears in this paper on page 65.
- ^ Gross, Jonathan L.; Yellen, Jay. Handbook of graph theory. CRC Press. 2004: 35. ISBN 978-1-58488-090-5.
- ^ Bender & Williamson 2010,第148頁.
- ^ 参见 Iyanaga and Kawada, 69 J, p. 234 or Biggs, p. 4.
- ^ Bender & Williamson 2010,第149頁.
- ^ Graham et al., p. 5.
- ^ 8.0 8.1 Bender & Williamson 2010,第161頁.
- ^ 徐 2004,第1頁.
- ^ Strang, Gilbert, Linear Algebra and Its Applications 4th, Brooks Cole, 2005, ISBN 978-0-03-010567-8
- ^ Lewis, John, Java Software Structures 4th, Pearson: 405, 2013, ISBN 978-0133250121
- ^ Fletcher, Peter; Hoyle, Hughes; Patty, C. Wayne. Foundations of Discrete Mathematics International student. Boston: PWS-KENT Pub. Co. 1991: 463. ISBN 978-0-53492-373-0.
A weighted graph is a graph in which a number w(e), called its weight, is assigned to each edge e.
- ^ 徐 2004,第20-21頁.
- ^ Grandjean, Martin. A social network analysis of Twitter: Mapping the digital humanities community. Cogent Arts & Humanities. 2016, 3 (1): 1171458. doi:10.1080/23311983.2016.1171458 .
- ^ Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Bosagh Zadeh WTF: The who-to-follow system at Twitter, Proceedings of the 22nd international conference on World Wide Web. doi:10.1145/2488388.2488433.
文献
- Introduction To Graph Theory, by Gary Chartrand and Ping Zhang, McGraw Hill
- 徐, 俊明. 图论及其应用 第二版. 合肥: 中国科学技术大学出版社. 2004. ISBN 7-312-00979-4.
- Balakrishnan, V. K. Graph Theory 1st. McGraw-Hill. 1997. ISBN 978-0-07-005489-9.
- Bang-Jensen, J.; Gutin, G. Digraphs: Theory, Algorithms and Applications. Springer. 2000.
- Bender, Edward A.; Williamson, S. Gill. Lists, Decisions and Graphs. With an Introduction to Probability. 2010.
- Berge, Claude. Théorie des graphes et ses applications. Paris: Dunod. 1958 (法语).
- Biggs, Norman. Algebraic Graph Theory 2nd. Cambridge University Press. 1993. ISBN 978-0-521-45897-9.
- Bollobás, Béla. Modern Graph Theory 1st. Springer. 2002. ISBN 978-0-387-98488-9.
- Diestel, Reinhard. Graph Theory 3rd. Berlin, New York: Springer-Verlag. 2005. ISBN 978-3-540-26183-4.
- Graham, R.L.; Grötschel, M.; Lovász, L. Handbook of Combinatorics. MIT Press. 1995. ISBN 978-0-262-07169-7.
- Gross, Jonathan L.; Yellen, Jay. Graph Theory and Its Applications. CRC Press. 1998. ISBN 978-0-8493-3982-0.
- Gross, Jonathan L.; Yellen, Jay. Handbook of Graph Theory. CRC. 2003. ISBN 978-1-58488-090-5.
- Harary, Frank. Graph Theory. Addison Wesley Publishing Company. 1995. ISBN 978-0-201-41033-4.
- Iyanaga, Shôkichi; Kawada, Yukiyosi. Encyclopedic Dictionary of Mathematics . MIT Press. 1977. ISBN 978-0-262-09016-2.
- Zwillinger, Daniel. CRC Standard Mathematical Tables and Formulae 31st. Chapman & Hall/CRC. 2002. ISBN 978-1-58488-291-6.
- Trudeau, Richard J. Introduction to Graph Theory Corrected, enlarged republication. New York: Dover Publications. 1993 [8 August 2012]. ISBN 978-0-486-67870-2.