正二十面體

正多面體
(重定向自雙五角錐反角柱

正二十面體是一種正多面體,由20正三角形組成。同時,它也是柏拉圖立體三角面多面體以及康威多面體。正二十面体是所有五种凸正多面體面數最多的。

正二十面體
正二十面體
(按這裡觀看旋轉模型)
類別柏拉圖立體
正多面体
對偶多面體正十二面體在维基数据编辑
識別
名稱正二十面體
參考索引U22, C25, W4
鮑爾斯縮寫
verse-and-dimensions的wikiaBowers acronym
ike在维基数据编辑
數學表示法
施萊夫利符號
{3,5}在维基数据编辑
威佐夫符號
英语Wythoff symbol
5 | 2 3
康威表示法I
sT在维基数据编辑
性質
20
30
頂點12
歐拉特徵數F=20, E=30, V=12 (χ=2)
二面角138.189685°
組成與佈局
面的種類正三角形
面的佈局
英语Face configuration
20個{3}
頂點圖3.3.3.3.3
對稱性
對稱群Ih
特性
三角面多面體
圖像

3.3.3.3.3
頂點圖

展開圖

正二十面體有203012頂點,其對偶正十二面體。它的頂點佈局英语Vertex_configuration為3.3.3.3.3或35,在施萊夫利符號中可用{3,5}來表示。

與正十二面體的关系

在平面上,正多邊形內接到時,數越多,佔圓面積的百分比就越高;而在三維空間中,這個規則卻不可推廣——當正十二面體和正二十面體內接到一個時,前者約佔66.4909%,後者僅佔60.5461%。

 
正十二面體是正二十面體的對偶多面體

外接球與內切球

若有一個邊長為a的正二十面體,則它的外接球(同時過該正二十面體所有頂點的球)的半徑為:

  A019881

則有內切球(同時和該正二十面體所有面相切的球)的半徑為:

  A179294

另外,若有一個球同時過該正二十面體所有邊的中點,那它的半徑為:

  A019863

其中φ (也稱作τ)為黃金比例

體積與表面積

若用A表示表面積V表示體積,而a是正二十面體的邊長,則有:

  A010527
  A102208

後者約為正四面體F=20倍,因為20面體以外接球球心為中心可以切割出20個四面體,每個四面體的體積是底面積 √3a2/4乘上高ri再乘三分之一。

正二十面體佔其外接球體的體積填充率是:

 

直角坐標系

 
正二十面體的頂點能共同分成五組,每組擁有三個同心、相互垂直的黃金矩形。

直角坐標系中,一個邊長為二、幾何中心在原點的正二十面體的坐標分別為:[1]

(0, ±1, ±φ)
(±1, ±φ, 0)
φ, 0, ±1)

其中φ = 1 + 5/2黃金比例(或記為τ)。值得注意的是,這些頂點能共同形成五組,每組擁有三個同心、相互垂直的黃金矩形,其形成博羅梅安環英语Borromean rings,其中,前者是因為正二十面體與黃金比例有密切的關係。 如果原始的二十面體的邊長為1,那麼它的對偶——正十二面體的邊長就是5 − 1/2,正好是一個黃金比例

 
一個由塑膠棒和磁鐵金屬球連接的正二十面體模型

12條邊的一個正八面體可以被細分在黃金比例,使所得到的頂點可構成一個正二十面體。這首先要使沿著八面體邊的向量連成一個有界的環,再沿著向量的方向以黃金比例作分割。

球面坐標

正二十面體是一個D5d二面體對稱對稱的一個雙五角錐反角柱,且頂點可以定義在球面坐標系上,其中兩個頂點在球的兩極,其餘在緯度±arctan(1/2)的位置。可以發現剩餘的10頂點屬於反棱柱對稱,從一個定點,經度每36°做一次極軸與赤道鏡射,直到回到原始點。

與黃金分割的關係

若以正二十面體的中心為原點,各頂點的坐標分別為{(0,±1,±Φ), (±1,±Φ,0), (±Φ,0,±1)},在此Φ = 5 − 1/2,即黃金分割數。因此,這些頂點能共同形成五組,每組擁有三個同心、相互垂直的黃金矩形

正交投影

正二十面体有3种特殊的正交投影,分别正对着一个面、一条棱、一个顶点。

正交投影
正对于 顶点
考克斯特平面英语Coxeter plane A2 A3 H3
图像      
投影
对称性
[6] [2] [10]
图像  
面法线
 
棱法线
 
对角线

其它事实

  • 正二十面体有43,380种不同的展开图
  • 若要将正二十面体的表面涂色而相邻的面的颜色不同,则至少需要3种颜色。
  • 内接与同一球的正二十面体和正十二面体,正二十面体所占球的体积(60.54%)要小于正十二面体所占的体积(66.49%)。

通过一系列等夹角线段构造正二十面体

 
正二十面体
H3考克斯特平面
 
六维正轴体英语6-orthoplex
D6考克斯特平面
这个操作可以以几何的观点被看作六维正轴体的12个顶点投影到三维空间。这代表着一个D6到H3考克斯特群几何折叠英语Coxeter–Dynkin diagram#Geometric_folding 

见这些二维考克斯特平面英语Coxeter plane正交投影,中间投影后重合的两个顶点给出了这个图像中的第三根轴

以下构建正二十面体的方法避免了使用更基础的方法时必要的在数域 中的复杂计算。
正二十面体的存在性依赖于 中6条等夹角线的存在性。事实上,我们很容易便可以发现,这样一组等夹角线与欧几里得空间中的球心在等夹角线所共的交点的球相交,得出的交点即是一个正二十面体的12个顶点。从相反方向考虑,假设这里存在一个正二十面体,它的6对相对顶点的连线(对角线)就形成了那样一个等夹角线系统。
为了构建这样一个等夹角线系统,我们开始于一个6×6方形矩阵

 

通过直接的计算,我们可以得出A2=5I(在这里I是6×6单位矩阵)。这表明矩阵I特征值是√5和-√5,并且它们的复杂性都是3,因为A是对称的,并且它的是0。
矩阵 商空间 中引出了一个同构 欧几里得结构因为它的 是三的。在 中,它的六条坐标轴线 投影 下的图像形成了这样一个在 中由六条等夹角线组成的系统,它们都相交于一点,两两之间都夹着锐角 。±v1,...,±v6A的√5-特征空间正交投影形成了正二十面体的12个顶点。
正二十面体另一个直接的构造用到了交错群A5群表示论方法,它直接利用了正二十面体的等距同构

半正涂色和子对称群

 
正二十面体作为扭棱四面体,可以通过旋转正四面体的正三角形面,并在4个顶点处插入新的三角形,在原来的6条棱处插入新的一对三角形来构造

作为正多面体之一,正二十面体拥有较高的对称性,它的所有面在几何上都是相同的,不可区分的。可是我们也可以想象将正二十面体的面“涂上”不同的“颜色”,使它其的不同面拥有不同的“几何意义”,使其拥有不同的次级对称性。正二十面体有三种不同的半正涂色方法,可以按照一个顶点引出的5个面的涂色来标记为11213、11212、11111。正二十面体可以被描述为扭棱正四面体,具有手征性正四面体对称性英语tetrahedral symmetry;它亦可以被描述成交错截顶正八面体,有五角十二面体对称性英语pyritohedral symmetry。这个具有五角十二面体对称的正二十面体也被叫做伪二十面体五角十二面体的对偶。

名称 正二十面体 交错
截角八面体
扭棱
正四面体
正五
双锥反柱体
考克斯特-迪肯英语Coxeter-Dynkin diagram                  
施莱夫利符号 {3,5} h0,1{3,4} s{3,3}
Wythoff符号英语Wythoff symbol 5 | 3 2 | 3 3 2
对称性英语List of spherical symmetry groups Ih
[5,3]
(*532)
Th
[3+,4]
(3*2)
T
[3,3]+
(332)
D5d
[2+,10]
(2*5)
对称群阶 60 24 12 10
半正涂色  
(11111)
 
(11212)
 
(11213)
 
(11122)&(22222)

与其它几何图形的关系

正二十面体是正二十面体家族的一员:

正二十面体家族半正多面体
對稱群: [5,3]英语Icosahedral symmetry, (*532) [5,3]+, (532)
                                               
               
{5,3} t0,1{5,3} t1{5,3} t0,1{3,5} {3,5} t0,2{5,3} t0,1,2{5,3} s{5,3}
半正多面体对偶
                                               
               
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

作为扭棱正四面体和交错截顶正八面体,正二十面体也是正四面体家族和正八面体家族的一员:

正四面体家族半正多面体
对称性: [3,3], (*332) [3,3]+, (332)
                                               
               
{3,3} t0,1{3,3} t1{3,3} t1,2{3,3} t2{3,3} t0,2{3,3} t0,1,2{3,3} s{3,3}
半正多面体对偶
                                               
               
V3.3.3 V3.6.6 V3.3.3.3 V3.6.6 V3.3.3 V3.4.3.4 V4.6.6 V3.3.3.3.3
半正正八面体家族多面体
对称性: [4,3], (*432) [4,3]+, (432) [1+,4,3], (*332) [4,3+], (3*2)
                                                           
                   
{4,3} t0,1{4,3} t1{4,3} t1,2{4,3} {3,4} t0,2{4,3} t0,1,2{4,3} s{4,3} h{4,3} h1,2{4,3}
半正多面体的对偶
                                                           
                   
V4.4.4 V3.8.8 V3.4.3.4 V4.6.6 V3.3.3.3 V3.4.4.4 V4.6.8 V3.3.3.3.4 V3.3.3 V3.3.3.3.3

正二十面体在拓扑上与其它一系列的正三角形镶嵌{3,n}和一系列的五阶正镶嵌{n,5}相关联:

多面体 欧式镶嵌 双曲镶嵌
 
{3,2}
 
{3,3}
 
{3,4}
 
{3,5}
 
{3,6}
 
{3,7}
 
{3,8}
 
{3,9}
...  
{3,∞)
球面鑲嵌 雙曲面鑲嵌
 
{2,5}
     
 
{3,5}
     
 
{4,5}
     
 
{5,5}
     
 
{6,5}
     
 
{7,5}
     
 
{8,5}
     
...  
{∞,5}
     

正二十面体和三个星形正多面体有着相同的顶点排布。其中与大十二面体还有相同的棱排布:

图像  
大十二面体
 
小星形十二面体
 
大二十面体
考克斯特-迪肯符号英语Coxeter-Dynkin diagram                        

虽然由于正二十面体的二面角太大(约138.189685°>120°),因此正二十面体不可能密铺三维欧几里得空间,但它可以密铺适当的双曲空间,称为三阶正二十面体堆砌英语Icosahedral honeycomb,每条棱处有三个正二十面体相交,每个顶点处有12个正二十面体相交,因此顶点图正十二面体施莱夫利符号{3,5,3},是四个三维双曲空间中的正堆砌之一。

 
这里我们用庞加莱圆盘模型上的线架来表示它,中心的正二十面体被涂上了颜色。
類別 柏拉圖立體 卡塔蘭立體
種子  
{3,3}
 
{4,3}
 
{3,4}
 
{5,3}
 
{3,5}
 
aC
 
aD
倒角  
cT
 
cC
 
cO英语Chamfered octahedron
 
cD
 
cI
 
caC
 
caD

應用

 
二十骰子
 
電子顯微鏡下觀察的原子
 
γ-硼的結構

由於正二十面體非常均勻,且有20個面,因此適合作成骰子。

在生物學中

 
噬菌体

某些病毒,如疱疹病毒科諾羅病毒腺病毒噬菌体等,擁有正二十面體的衣殼[2][3]在有些細菌中還發現具有二十面體形狀的各種細菌胞器[4]二十面體的殼包住和不穩定的中間產物,該殼由具BMC結構域英语BMC domain的不同蛋白質構成。

1904年,恩斯特·海克尔發表了一些放射蟲的種類,包括Circogonia二十面體(Circogonia icosahedra),其骨架的形狀像一個正二十面體。

參考文獻

  1. ^ Weisstein, Eric W. (编). Icosahedral group. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  2. ^ C. Michael Hogan. 2010. Virus. Encyclopedia of Earth. National Council for Science and the Environment页面存档备份,存于互联网档案馆). eds. S. Draggan and C. Cleveland
  3. ^ 存档副本. [2005-06-25]. (原始内容存档于2006-03-25). 
  4. ^ Bobik, T.A., Bacterial Microcompartments, Microbe (Am. Soc. Microbiol.), 2007, 2: 25–31, (原始内容存档于2013-07-29) 

外部連結