红河断裂带
地质背景
自新生代以来,随着印度板块持续向北楔入,青藏高原东南缘经历了显著的构造变形[2][3]。红河断裂带作为川滇块体的西部边界,不仅分隔印支块体与华南块体[4],还因青藏高原物质向东侧挤出,成为区域内重要的深部构造带[5][6][7]。红河断裂带的地质构造及地壳变形具有由北向南的分段特征[8],其与峨眉山大火成岩省的岩石侵蚀程度相呼应[9]。
地质构造特征
红河断裂带是中国最长的走滑断裂带之一,全长约1,000公里,斜贯云南西部和南部,整体呈北窄南宽的形态[1]。断裂带从洱源延伸至越南北部湾,被分为北段、中段和南段(北段为洱源—弥渡,中段为弥渡—大斗门,南段为大斗门—河口)[8]。
中-晚二叠纪时期,红河断裂带可能为峨眉山大火成岩省的岩浆活动提供了通道[9];而在古近纪,断裂带经历了多次左旋走滑运动,随着青藏高原的东向挤出,吸收了大量地壳缩短量[10][11]。到了新近纪,红河断裂带从左旋走滑转变为右旋走滑运动[12]。第四纪以来,断裂带以右旋走滑兼具伸展运动为特征,其中中段呈现显著的逆冲运动[6][13]。
红河断裂带两侧地壳厚度存在明显差异,东侧地壳厚度可达约50公里,而西侧则仅为30公里左右[1]。红河断裂带北段的泊松比值较高,可能与地幔物质底侵有关[14][15];而南段的泊松比相对较低,表明以长英质为主的地壳成分更容易发生部分熔融[16]。大地电磁资料显示,北段存在高电导率体,表明该区域的地壳结构可能受到上地幔影响[17][18][19]。
地震活动
红河断裂带属于中国南北地震带的南段,地震活动具有显著的分布不均匀性[1]。北段地震活动频繁,历史上发生过多次6级以上地震,其中包括2次7级以上大震;而中段几乎无震,南段的地震活动则集中在东侧的石屏—建水断裂上[20][21]。
参考文献
- ^ 1.0 1.1 1.2 1.3 李莹; 高原. 地震各向异性与地质构造揭示的红河断裂带分段性. SCIENTIA SINICA Terrae. 2024-08-01, 54 (8): 2458–2477. doi:10.1360/SSTe-2023-0239.
- ^ Yin, An; Harrison, T. Mark. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences. 2000-05, 28 (1): 211–280. doi:10.1146/annurev.earth.28.1.211.
- ^ Tapponnier, P.; Peltzer, G.; Le Dain, A. Y.; Armijo, R.; Cobbold, P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology. 1982, 10 (12): 611. doi:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2.
- ^ 阚荣举; 王绍晋, 黄崐, 宋文. 中国西南地区现代构造应力场与板内断块相对运动. 地震地质. 1983, (2): 79–90 [2024-09-14]. (原始内容存档于2024-09-14).
- ^ 许志琴, 王勤; XU Zhiqin, WANG Qin. 印度-亚洲碰撞:从挤压到走滑的构造转换. 地质学报. 2016-01-18, 90 (1): 1–23 [2024-09-14]. ISSN 0001-5717. (原始内容存档于2024-09-14) (cn).
- ^ 6.0 6.1 钟大赉, 张进江; Zhang Jinjiang, Zhong Dalai and Zhou Yong. 东南亚及哀牢山红河构造带构造演化的讨论. 地质论评: 337–344. [2024-09-14]. ISSN 0371-5736. (原始内容存档于2024-09-14) (cn).
- ^ Molnar, P.; Tapponnier, P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science. 1975-08-08, 189 (4201): 419–426. doi:10.1126/science.189.4201.419.
- ^ 8.0 8.1 虢顺民. 红河活动断裂带. 海洋出版社. 2001. ISBN 978-7-5027-5300-9 (中文).
- ^ 9.0 9.1 Xu, Yi-Gang; He, Bin; Chung, Sun-Lin; Menzies, Martin A.; Frey, Frederick A. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology. 2004, 32 (10): 917. doi:10.1130/G20602.1.
- ^ 哀牢山—红河构造带古新世以来多期活动的构造和年代学证据. 地质科学. Fri Apr 28 00:00:00 CST 2006, 41 (2): 291–310 [2024-09-14]. ISSN 0563-5020. (原始内容存档于2024-09-14) (中文).
- ^ Leloup, P. H.; Arnaud, N.; Lacassin, R.; Kienast, J. R.; Harrison, T. M.; Trong, T. T. Phan; Replumaz, A.; Tapponnier, P. New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia. Journal of Geophysical Research: Solid Earth. 2001-04-10, 106 (B4): 6683–6732. doi:10.1029/2000JB900322.
- ^ Schoenbohm, Lindsay M.; Burchfiel, B. Clark; Liangzhong, Chen. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau. Geology. 2006, 34 (10): 813. doi:10.1130/G22679.1.
- ^ Wen, Xueze; Ma, Shengli; Fang, Lihua; Liang, Mingjian; Du, Fang; Long, Feng; Zhao, Xiaoyan. Complex structural fault system and distributed deformation across the Big Bend of the Red River fault, Yunnan, China. Physics of the Earth and Planetary Interiors. 2022-12, 333: 106942. doi:10.1016/j.pepi.2022.106942.
- ^ 徐鸣洁; 王良书, 刘建华, 钟锴, 李华, 胡德昭, 徐震. 利用接收函数研究哀牢山-红河断裂带地壳上地幔特征. 中国科学D辑: 地球科学. 2005, 35 (8): 729–737 [2024-09-14]. ISSN 1006-9267. (原始内容存档于2024-09-14).
- ^ Hou, Zengqian; Wang, Qingfei; Zhang, Haijiang; Xu, Bo; Yu, Nian; Wang, Rui; Groves, David I; Zheng, Yuanchuan; Han, Shoucheng; Gao, Lei; Yang, Lin. Lithosphere architecture characterized by crust–mantle decoupling controls the formation of orogenic gold deposits. National Science Review. 2023-02-28, 10 (3). doi:10.1093/nsr/nwac257.
- ^ Wang, Weilai; Wu, Jianping; Fang, Lihua; Lai, Guijuan; Cai, Yan. Crustal thickness and Poisson's ratio in southwest China based on data from dense seismic arrays. Journal of Geophysical Research: Solid Earth. 2017-09, 122 (9): 7219–7235. doi:10.1002/2017JB013978.
- ^ Bai, Denghai; Unsworth, Martyn J.; Meju, Max A.; Ma, Xiaobing; Teng, Jiwen; Kong, Xiangru; Sun, Yi; Sun, Jie; Wang, Lifeng; Jiang, Chaosong; Zhao, Ciping; Xiao, Pengfei; Liu, Mei. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience. 2010-05, 3 (5): 358–362. doi:10.1038/ngeo830.
- ^ Yu, Nian; Unsworth, Martyn; Wang, Xuben; Li, Dewei; Wang, Enci; Li, Ruiheng; Hu, Yuanbang; Cai, Xuelin. New Insights Into Crustal and Mantle Flow Beneath the Red River Fault Zone and Adjacent Areas on the Southern Margin of the Tibetan Plateau Revealed by a 3‐D Magnetotelluric Study. Journal of Geophysical Research: Solid Earth. 2020-10, 125 (10). doi:10.1029/2020JB019396.
- ^ Yu, Nian; Wang, Enci; Wang, Xuben; Kong, Wenxin; Li, Dewei; Li, Ruiheng. The Influence of the Ailaoshan‐Red River Shear Zone on the Mineralization of the Beiya Deposit on the Southeastern Margin of the Tibetan Plateau Revealed by a 3‐D Magnetotelluric Survey. Journal of Geophysical Research: Solid Earth. 2022-02, 127 (2). doi:10.1029/2021JB022923.
- ^ Wen, Xue-ze; Ma, Sheng-li; Xu, Xi-wei; He, Yong-nian. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Physics of the Earth and Planetary Interiors. 2008-05, 168 (1-2): 16–36. doi:10.1016/j.pepi.2008.04.013.
- ^ Dong, Xingpeng; Yang, Dinghui. Positions of large earthquakes revealed from velocity heterogeneities and radial anisotropy in the eastern Tibetan Plateau. Science Bulletin. 2022-10, 67 (20): 2026–2029. doi:10.1016/j.scib.2022.09.019.
- ^ 邵志刚; 武艳强, 季灵运, 刁法启, 石富强, 李玉江, 龙锋, 张辉, 朱良玉, 陈长云, 王武星, 魏文薪, 王芃, 刘晓霞, 刘琦, 潘正洋, 尹晓菲, 刘月, 冯蔚, 邹镇宇, 曹建玲, 徐晶, 韩立波, 程佳, 鲁人齐, 徐岳仁, 李西, 孙鑫喆. 中国大陆活动地块边界带主要断层的强震震间晚期综合判定. 地球物理学报. 2022, 65 (12): 4643–4658. doi:10.6038/cjg2022P0489.
- ^ 李西; 冉勇康, 陈立春, 王虎, 于江, 张彦琪, 谢英情. 红河断裂带南段全新世地震活动证据. 地震地质. 2016, 38 (3): 596–604 [2024-09-14]. (原始内容存档于2024-09-14).