电势能
在靜電學裏,電勢能(electric potential energy)是處於電場的電荷分佈所具有的勢能,與電荷分佈在系統內部的組態有關。電勢能的單位是焦耳。電勢能與電勢不同。電勢定義為處於電場的電荷所具有的電勢能每單位電荷。電勢的單位是伏特。
電勢能的數值不具有絕對意義,只具有相對意義。所以,必須先設定一個電勢能為零的參考系統。當物理系統內的每一個點電荷相距无穷远且其相對靜止不動時,這一物理系統通常可以設定為電勢能等於零的參考系統。[1]:§25-1假設一個物理系統裏的每一個點電荷,從無窮遠处被一外力匀速地遷移到其所在位置,该外力做的总機械功為 ,則定义這系統的電勢能 為
- 。
在這過程裏,所涉及的機械功 ,不論是正值或負值,都由這物理系統之外的機制賦予。並且,被匀速遷移的每一個點電荷都不會獲得任何動能。
如此計算電勢能,並沒有考慮到移動的路徑,這是因為電場是保守場,電勢能只跟初始位置與終止位置有關,與路徑無關。
計算電勢能
在一個物理系統內,計算一個點電荷所具有的電勢能的方法,就是計算將這點電荷Q從無窮遠位置遷移到其它固定位置電荷附近所需要做的機械功。而計算只需要两个参数:
- 其它電荷所產生的電勢。
- 點電荷Q的電荷量。
注意:这里的計算不需要知道其它電荷的電荷量,也不需要知道这一點電荷Q所產生的電勢。
儲存於點電荷系統內的電勢能
單點電荷系統
只擁有單獨一個點電荷的物理系統,其電勢能為零,因為沒有任何其它可以產生電場的源電荷,所以,將點電荷從無窮遠移動至其最終位置,外機制不需要對它做任何機械功。特別注意,這點電荷有可能會與自己生成的電場發生作用。然而,由於在點電荷的位置,它自己生成的電場為無窮大,所以,在計算系統的有限總電勢能之時,一般刻意不將這「自身能」納入考量範圍之內,以簡化物理模型,方便計算。
雙點電荷系統
思考兩個點電荷所組成的物理系統。假設第一個點電荷 的位置為坐標系的原點 ,則根據庫侖定律,點電荷 施加於位置為 的第二個點電荷 的電場力為
- ;
其中, 是電常數。
在移动點電荷 時,為保证匀速,外機制必须施加作用力 於點電荷 ,从而与电场力达到二力平衡。所以,機械功 為
- 。
由於庫侖力為保守力,機械功與積分路徑 無關,所以,可以選擇任意一條積分路徑。在這裡,最簡單的路徑為從無窮遠位置朝著 方向遷移至 位置的直線路徑。那麼,機械功為
- 。
這機械功是無窮遠位置與 位置之間的靜電能差別:
- 。
設定 ,則
- 。
現在,假設兩個點電荷的位置分別為 、 ,則電勢能為
- ;
其中, 是兩個點電荷之間的距離。
假設兩個點電荷的正負性相異,則電勢能為負值,兩個點電荷會互相吸引;否則,電勢能為正值,兩個點電荷會互相排斥。
三個以上點電荷的系統
對於三個點電荷的系統,外機制將其每一個單獨點電荷,一個接著一個,從無窮遠位置遷移至最終位置,所需要做的機械功,就是整個系統的靜勢能。以方程式表示,
- ;
其中, 為點電荷, 為第i個與第j個點電荷之間的距離。
按照這方法演算,對於多個點電荷的系統,按照順序,從第一個點電荷到最後一個點電荷,各自移动到最後對應位置。在第 個點電荷 遷移時,只會感受到從第 個點電荷到第 個點電荷的電場力,而機械功 是因為抗拒這些電場力而做出的貢獻:
- 。
所有點電荷做出的總機械功(即總電勢能)為[2]
- 。
將每一個項目重覆多計算一次,然後將總和除以 ,這公式也可以表達為,
- 。
這樣,可以忽略點電荷的遷移順序。
注意到除了點電荷 以外,所有其它點電荷產生的電勢在位置 為
- 。
所以,離散點電荷系統的總電勢能為
- 。
儲存於連續電荷分佈的能量
對於連續電荷分佈,前面的電勢能方程式變為[2]
- ;
其中, 是在源位置 的電荷密度, 是積分體積。
應用高斯定律
- ;
其中, 是電場。
電勢能為
- 。
應用散度定理,可以得到
- ;
其中, 是包住積分體積 的閉曲面。
當積分體積 趨向於無限大時,閉曲面 的面積趨向於以變率 遞增,而電場、電勢分別趨向於以變率 、 遞減,所以,上述方程式左手邊第一個面積分項目趨向於零,電勢能變為
- 。
電場與電勢的微分關係為
- 。
將這方程式代入,電勢能變為
- 。
所以,電勢能密度 為
- 。
自身能與交互作用能
前面分別推導出兩個電勢能方程式:
- 。
- 。
注意到第一個方程式計算得到的電勢能,可以是正值,也可以是負值;但從第一個方程式推導出來的第二個方程式,其計算得到的電勢能則必定是正值。為甚麼會發生這不一致問題?原因是第一個方程式只囊括了電荷與電荷之間的交互作用能;而第二個方程式在推導過程中,無可避免地將電荷的自身能也包括在內。在推導第一個方程式時,在位置 的電勢乃是,除了 以外,所有其它電荷共同貢獻出的電勢;而在推導第二個方程式時,電勢乃是所有電荷共同貢獻出的電勢。
舉一個雙點電荷案例,假設電荷 、 的位置分別為 、 ,則在任意位置 的電場為[2]
- ,
其電勢能密度為
- 。
很明顯地,這方程式右手邊的前兩個項目分別為電荷 、 的自身能密度 、 。最後一個項目是否為交互作用能密度?為了回答這有意思的問題,繼續計算交互作用能密度的體積積分:
- 。
應用一條向量恆等式,
- ,
可以得到
- 。
應用散度定理,可以將這方程式右手邊第一個項目,從體積積分變為面積積分:
- ;
其中, 是包住積分體積 的閉曲面。
假設 趨向於無窮大空間,則這面積積分趨向於零。再應用一則關於狄拉克δ函數的向量恆等式
- ,
可以得到
- 。
這就是双点电荷系统的電勢能。
參考文獻
- ^ Halliday, David; Resnick, Robert; Walker, Jearl. Electric Potential. Fundamentals of Physics 5th. John Wiley & Sons. 1997. ISBN 0-471-10559-7.
- ^ 2.0 2.1 2.2 Jackson, John David, Classical Electrodynamic 3rd., USA: John Wiley & Sons, Inc.: pp. 40–43, 1999, ISBN 978-0-471-30932-1