1859年太阳风暴

卡灵顿事件[1]是在1859年9月1-2日,第10太阳周期(1855-1867年)期间的一场强大地磁风暴。太阳的日冕物质抛射撞击地球磁场,并诱发有纪录以来最大风暴。英国天文学家理查·卡灵顿理查·霍奇森英语Richard Hodgson (publisher)观测与纪录了太阳光球中相关的"白光闪焰"。这场风暴造成强烈的极光,并对电报系统造成严重破坏。现在,这个闪焰在国际天文学联合会的标准识别字是SOL1859-09-01。

理查·卡灵顿描绘的1859年9月1日的太阳黑子。A和B标志着一个强烈的明亮事件的初始位置,大约在5分钟后移动到C和D,然后消失。

这种规模的太阳风暴如果发生在现代,将造成大范围的电力中断:停电,以及电网长期停电造成的破坏[2][3]。2012年发生的一场太阳风暴强度与1859年的相似,它虽然也经过地球的轨道,但与地球通过该处相隔了9天,所以没有对地球造成损害[4]

卡灵顿闪焰

 
在1999年,接近太阳极大期时发生的一个闪焰。

就在第10太阳周期极大期,1860.1之前的几个月[5],从1859年8月28日至9月2日,太阳上出现了许多太阳黑子。在8月28日就观测到夜晚的天空明亮且颜色多变,新英格兰地区的各种报纸在这之后都有相关的报导[6]。在8月29日,在南半球的澳洲最北方的昆士兰州都能看到南极光 [7]。就在9月1日中午之前,英国业余天文学家理查·卡灵顿理查·霍奇森英语Richard Hodgson (publisher)分别记录了对太阳闪焰最早的观测[8]。卡灵顿和霍奇森都各自提出了报告,于1859年11月的英国皇家天文学会的会议上展示它们对此一事件的描述,并同时发表在皇家天文学会月报[9][10]

闪焰和结合的主要日冕物质抛射直接扑向地球,仅耗费17.6小时就完成1亿5千万公里的旅程。一般的日冕物质抛射需要几天的时间才会抵达地球,因此们认为此一日冕物质抛射的相对高速,可能与前一次的日冕物质抛射有关。可能是8月29日的大型极光事件为卡灵顿事件清空了周围的道路,让太阳风中的等离子畅行无阻[8]

因为地磁对太阳闪焰的效应[11](magnetic crochet)[12],在乔城天文台的苏格兰物理学家巴尔弗·斯图尔特英语Balfour Stewart使用磁强计记录了29日和30日的磁暴(因此也称为斯图尔特超级闪焰),让卡灵顿怀疑日地之间的关系[13][页码请求]美国数学家伊莱亚斯·罗密士编撰并发表了有关1859年磁爆对全球影响的报告,支持卡灵顿和斯图尔特的观测[14]

 
2010年5月24日,从国际太空站(ISS)拍摄到的极光,极有可能是由日冕物质抛射引起的磁暴产生。

1859年9月1日至2日,发生了一次最强的磁暴(由地面磁强计记录)。极光出现在世界各地,北半球的极光在加勒比海地区都可以看见;在美国,洛矶山脉上空非常明亮,光芒将当地金矿的工人惊醒,使他们误以为天亮了,而开始准备早餐[8]美国东北部的人们可以在极光下阅读报纸[15]。从两极到在墨西哥中部的低纬度地区都能看见极光[16][17]昆士兰、古巴、夏威夷[18]、日本和中国的南部[19][20],甚至在靠近赤道的低纬度地区 ,例如哥伦比亚,都能看见极光[21]。估计磁暴强度的范围在-800nT.至-1750nT.[22]

遍布欧洲和北美洲的电报系统失灵,一些正在操作电报的人员遭到电击 [23],电报塔发出火花[24]。 尽管一些电报机已经关掉了电源,但报务员仍然可以继续发送和接收资讯[25]

1859年9月3日,星期六,"Baltimore American and Commercial Advertiser英语Baltimore News-American"报导:

那些在周四深夜碰巧外出的人机缘凑巧目睹了一次壮丽的极光展示。如果可能的话,星期日晚间也会有非常相似的现象,光线也有可能会更为明亮,棱柱状的色调也会更加丰富多彩。光线显然像一片发光的云彩,似乎覆盖的整个天空,通过云彩依然可见较亮的恒星发出隐约的光。这些光比满月时的月光还要亮,但有一种难以形容的柔和和细腻,似乎把它所依靠的一切都包裹了起来。在子夜12点至1点之间,展示出最绚丽的景象时,在这奇异的光芒下,静谧的都市街道呈现出既美丽又奇异的景象[26]

 
2012年和地球擦肩而过的大型CME

在1909年,一位澳大利亚的金矿工赫伯特(C.F. Herbert)在写给珀斯的每日新闻英语Daily News (Perth, Western Australia)的信中描述了他当时的观察:

我是在距离维多利亚镇大约4英里的罗克伍德(Rokewood)挖金矿的矿工。我和两位伙伴在晚上7点左右从帐篷向外望去,看到南方的天空中有一个巨大的倒影,大约半个小时后,出现了不知该如何形容的美丽景象。南方的天空发出各种颜色的光,如果可能的话,当一种颜色渐渐褪去,就会有另一种更美的颜色出现;光辉一直流到天顶,但到达天顶时,总是变成一种浓郁的紫色,也总是卷曲著,留下一片清澈的天空,这些始终维持在手臂伸直时约4根手指宽的范围。在天顶北方的天空也被美丽的色彩照亮,也总是在天顶处卷曲,但因为南方和北方所有的颜色是对应的,因此被认为只是南方显示的复制品。这是一个永远不会被遗忘的景象,在当时被认为是最伟大的极光纪录…。理性主义者和泛神论者看到大自然穿着它最精致的长袍,认识到神圣的内在,永恒的法则、因果。迷信者和狂热者有可怕的预感,他们认为这预示著世界末日和最终的毁灭[27]

页面存档备份,存于互联网档案馆)。

在2013年6月,一家由伦敦劳埃德银行和美国大气与环境研究所的研究人员组成的合资企业,利用卡灵顿事件的数据估计,仅就美国而言,类似事件的成本高达0.6〜2.6兆美元[2],这相当于当时每年GDP的3.6%〜15.5%。

其它证据和类似事件

对含有丰富硝酸盐的薄层冰芯英语Ice core进行分析,可以重建有可靠观测之前的太阳风暴历史。这是基于这样的一个假设,即太阳的高能粒子会使氮电离,从而产生NO和其它的氮氧化物,这些化合物在与雪一起沉积之前不会在大气中被稀释[28]。从1986年开始,一些研究人员声称来自格陵兰冰芯的资料显示了个别太阳质子事件的证据,包括卡灵顿[29]。更多的冰芯研究对这一解释提出了重大质疑,并表明硝酸盐峰值可能不是太阳高能粒子事件的结果,而是由森林火灾等事件引起的,也与已知森林火灾羽流的其它化学特征有关。事实上,在格陵兰岛和南极洲的岩芯中没有发现一致性的硝酸盐事件,因此这一假设现在受到怀疑[28][30][31]。其它研究已经在树轮的碳-14和冰芯的铍-10中寻找到大型太阳闪焰和日冕物质抛射的特征,发现在公元前774年有这样的一个大型太阳风暴的特征,同时也发现这样的事件平均数千年才发生[32]

1921年5月和1960年发生较不严重的风暴,当时报告有广泛的无线电干扰。1989年3月的磁暴摧毁了加拿大魁北克省大部分地区的电力供应。在2012年7月23日观测到一个"卡灵顿级"的太阳风暴(太阳闪焰日冕物质抛射太阳电磁脉冲);好在它的轨道恰巧从地球边缘掠过[4][33]

相关条目

参考文献

  1. ^ Philips, Tony. Severe Space Weather—Social and Economic Impacts. NASA Science: Science News (science.nasa.gov). 2009-01-21 [2011-02-16]. (原始内容存档于2009-04-04). 
  2. ^ 2.0 2.1 Lloyd's and Atmospheric and Environmental Research, Inc. Solar storm risk to the north American electric grid (PDF). With input from Homeier, Nicole; Horne, Richard; Maran, Michael; Wade, David. Lloyd's. 2013 [2019-07-31]. (原始内容存档 (PDF)于2016-12-05). 
  3. ^ Baker, D. N.; et al. Severe Space Weather Events—Understanding Societal and Economic Impacts. The National Academy Press, Washington, DC. 2008. ISBN 978-0-309-12769-1. doi:10.17226/12507. 
  4. ^ 4.0 4.1 Phillips, Dr. Tony. Near Miss: The Solar Superstorm of July 2012. NASA. 2014-07-23 [2014-07-26]. (原始内容存档于2020-06-07). 
  5. ^ Mursula, K.; Ulich, Th. A new method to determine the solar cycle length. Geophysical Research Letters. 1998, 25 (11): 1837–1840. Bibcode:1998GeoRL..25.1837M. doi:10.1029/98GL51317. 
  6. ^ Green, James L.; Boardsen, Scott; Odenwald, Sten; Humble, John; Pazamickas, Katherine A. Eyewitness reports of the great auroral storm of 1859. Advances in Space Research. January 2006, 38 (2): 145–154 [2020-08-28]. doi:10.1016/j.asr.2005.12.021. (原始内容存档于2021-05-13). 
  7. ^ SOUTHERN AURORA.. The Moreton Bay Courier (Brisbane: National Library of Australia). 1859-09-07: 2 [2013-05-17]. (原始内容存档于2020-07-22). 
  8. ^ 8.0 8.1 8.2 Odenwald, Sten F.; Green, James L. Bracing the Satellite Infrastructure for a Solar Superstorm. Scientific American. 2008-07-28, 299 (2): 80–7 [2011-02-16]. PMID 18666683. doi:10.1038/scientificamerican0808-80. (原始内容存档于2008-11-17). 
  9. ^ Carrington, R. C. Description of a Singular Appearance seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society. 1859, 20: 13–15 [2021-05-13]. Bibcode:1859MNRAS..20...13C. doi:10.1093/mnras/20.1.13 . (原始内容存档于2021-05-13). 
  10. ^ Hodgson, R. On a curious Appearance seen in the Sun. Monthly Notices of the Royal Astronomical Society. 1859, 20: 15–16 [2021-05-13]. Bibcode:1859MNRAS..20...15H. doi:10.1093/mnras/20.1.15 . (原始内容存档于2021-05-14). 
  11. ^ 存档副本. [2021-05-13]. (原始内容存档于2015-09-24). 
  12. ^ Thompson, Richard. A Solar Flare Effect. Australian Government: Space Weather Services. [2015-09-02]. (原始内容存档于2015-09-24). 
  13. ^ Clark, Stuart. The Sun Kings: The Unexpected Tragedy of Richard Carrington and the Tale of How Modern Astronomy Began. Princeton: Princeton University Press. 2007. ISBN 978-0-691-12660-9. 
  14. ^ See:
  15. ^ Richard A. Lovett. What If the Biggest Solar Storm on Record Happened Today?. National Geographic News. 2011-03-02 [2011-09-05]. (原始内容存档于2017-05-10). 
  16. ^ Hayakawa, H. Low-latitude Aurorae during the Extreme Space Weather Events in 1859. The Astrophysical Journal. 2018, 869 (1): 57. Bibcode:2018ApJ...869...57H. S2CID 119386459. arXiv:1811.02786 . doi:10.3847/1538-4357/aae47c. 
  17. ^ González‐Esparza, J. A.; M. C. Cuevas‐Cardona. Observations of Low Latitude Red Aurora in Mexico During the 1859 Carrington Geomagnetic Storm. Space Weather. 2018, 16 (6): 593. Bibcode:2018SpWea..16..593G. doi:10.1029/2017SW001789 . 
  18. ^ Green, J. Duration and extent of the great auroral storm of 1859. Advances in Space Research. 2006, 38 (2): 130–135. Bibcode:2006AdSpR..38..130G. PMC 5215858 . PMID 28066122. doi:10.1016/j.asr.2005.08.054. 
  19. ^ 国家空间科学数据中心(National Space Science Data Center). vsso.nssdc.ac.cn. [2021-10-28]. (原始内容存档于2021-10-28). 
  20. ^ Hayakawa, H. East Asian observations of low-latitude aurora during the Carrington magnetic storm. Publications of the Astronomical Society of Japan. 2016, 68 (6): 99. Bibcode:2016PASJ...68...99H. S2CID 119268875. arXiv:1608.07702 . doi:10.1093/pasj/psw097. 
  21. ^ Moreno Cárdenas, Freddy; Cristancho Sánchez, Sergio; Vargas Domínguez, Santiago; Hayakawa, Satoshi; Kumar, Sandeep; Mukherjee, Shyamoli; Veenadhari, B. The grand aurorae borealis seen in Colombia in 1859. Advances in Space Research. 2016, 57 (1): 257–267. Bibcode:2016AdSpR..57..257M. S2CID 119183512. arXiv:1508.06365 . doi:10.1016/j.asr.2015.08.026. 
  22. ^ Near Miss: The Solar Superstorm of July 2012 – NASA Science. science.nasa.gov. [2016-09-14]. (原始内容存档于2020-06-07). 
  23. ^ Committee on the Societal and Economic Impacts of Severe Space Weather Events: A Workshop, National Research Council. Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report. National Academies Press. 2008: 13. ISBN 978-0-309-12769-1. 
  24. ^ Odenwald, Sten F. The 23rd Cycle. Columbia University Press. 2002: 28 [registration]. ISBN 978-0-231-12079-1. 
  25. ^ Carlowicz, Michael J.; Lopez, Ramon E. Storms from the Sun: The Emerging Science of Space Weather. National Academies Press. 2002: 58. ISBN 978-0-309-07642-5. 
  26. ^ The Aurora Borealis. Baltimore American and Commercial Advertiser. 1859-09-03: 2; Column 2 [2011-02-16]. (原始内容存档于2021-05-14). 
  27. ^ Herbert, Count Frank. The Great Aurora of 1859. The Daily News (Perth, WA). 1909-10-08: 9 [2018-04-01]. (原始内容存档于2021-05-15). 
  28. ^ 28.0 28.1 Wolff, E. W.; Bigler, M.; Curran, M. A. J.; Dibb, J.; Frey, M. M.; Legrand, M. The Carrington event not observed in most ice core nitrate records. Geophysical Research Letters. 2012, 39 (8): 21,585–21,598 [2021-05-14]. Bibcode:2012GeoRL..39.8503W. doi:10.1029/2012GL051603 . (原始内容存档于2021-05-14).  
  29. ^ McCracken, K. G.; Dreschhoff, G. A. M.; Zeller, E. J.; Smart, D. F.; Shea, M. A. Solar cosmic ray events for the period 1561–1994 1. Identification in polar ice, 1561–1950. Journal of Geophysical Research. 2001, 106 (A10): 21,585–21,598. Bibcode:2001JGR...10621585M. doi:10.1029/2000JA000237.   
  30. ^ Duderstadt, K. A.; et al. Nitrate deposition to surface snow at Summit, Greenland, following the 9 November 2000 solar proton event. J. Geophys. Res. Atmospheres. 2014, 119 (11): 6938–6957 [2021-05-14]. Bibcode:2014JGRD..119.6938D. doi:10.1002/2013JD021389 . (原始内容存档于2021-05-14). 
  31. ^ Mekhaldi, F.; et al, No Coincident Nitrate Enhancement Events in Polar Ice Cores Following the Largest Known Solar Storms (PDF), Journal of Geophysical Research: Atmospheres, November 2017, 122 (21): 11,900–11,913 [2021-05-14], Bibcode:2017JGRD..12211900M, doi:10.1002/2017JD027325 , (原始内容存档 (PDF)于2021-05-14) 
  32. ^ Battersby, Stephen. Core Concept: What are the chances of a hazardous solar superflare?. Proceedings of the National Academy of Sciences. 2019-11-19, 116 (47): 23368–23370. ISSN 0027-8424. PMC 6876210 . PMID 31744927. doi:10.1073/pnas.1917356116 (英语). 
  33. ^ Video (04:03) – Carrington-class coronal mass ejection narrowly misses Earth. NASA. 2014-04-28 [2014-07-26]. (原始内容存档于2020-05-09). 

进阶读物

外部链接