二项堆
在电脑科学中,二项堆(英语:Binomial heap)是一种类似于二叉堆的堆结构。与二叉堆相比,其优势是可以快速合并两个堆,因此它属于可合并堆(mergeable heap)抽象数据类型的一种。
二项树
二项树递归定义如下:
- 度数为0的二项树只包含一个节点
- 度数为k的二项树有一个根节点,根节点下有 个子女,每个子女分别是度数分别为 的二项树的根
度数为k的二项树共有 个节点,高度为 。在深度d处有 (二项式系数)个节点。
度数为k的二项树可以很容易从两颗度数为k-1的二项树合并得到:把一颗度数为k-1的二项树作为另一颗原度数为k-1的二项树的最左子树。这一性质是二项堆用于堆合并的基础。
二项堆
二项堆是指满足以下性质的二项树的集合:
- 每棵二项树都满足最小堆性质,即节点关键字大于等于其父节点的值
- 不能有两棵或以上的二项树有相同度数(包括度数为0)。换句话说,具有度数k的二项树有0个或1个。
以上第一个性质保证了二项树的根节点包含了最小的关键字。第二个性质则说明节点数为 的二项堆最多只有 棵二项树。实际上,包含n个节点的二项堆的构成情况,由n的二进制表示唯一确定,其中每一位对应于一颗二项树。例如,13的二进制表示为1101, , 因此具有13个节点的二项堆由度数为3, 2, 0的三棵二项树组成:
示例:一个含13个节点的二项堆
二项堆的操作
由于并不需要对二项树的根节点进行随机存取,因而这些节点可以存成链表结构。
合并
最基本的为二个分支度相同的二项树的合并。由于二项树根节点包含最小的关键字,因此在二棵树合并时,只需比较二个根节点关键字的大小,其中含小关键字的节点成为结果树的根节点,另一棵树则变成结果树的子树。
function mergeTree(p, q) if p.root <= q.root return p.addSubTree(q) else return q.addSubTree(p)
两个二项堆的合并则可按如下步骤进行:分支度 从小取到大,在两个二项堆中如果其中只有一棵树的分支度为 ,即将此树移动到结果堆,而如果只两棵树的分支度都为 ,则根据以上方法合并为一个分支度为 的二项树。此后这个分支度为 的树将可能会和其他分支度为 的二项树进行合并。因此,对于任何分支度j,可能最多需要合并3棵二项树。
此操作的时间复杂度为 。
function merge(p, q) while not (p.end() and q.end()) tree = mergeTree(p.currentTree(), q.currentTree()) if not heap.currentTree().empty() tree = mergeTree(tree, heap.currentTree()) heap.addTree(tree) heap.next(); p.next(); q.next()
插入
创建一个只包含要插入元素的二项堆,再将此堆与原先的二项堆进行合并,即可得到插入后的堆。由于需要合并,插入操作需要 的时间。平摊分析的时间复杂度为 。
查找最小关键字所在节点
由于满足最小堆性质,只需查找二项树的的根节点即可,因为一共有 棵子树,所以用所时间为 。
可以保存一个指向最小元素的指针,使得查找最小关键字所在节点需要 的时间。在执行其他操作时,需要修改该指针。
删除最小关键字所在节点
先找到最小关键字所在节点,然后将它从其所在的二项树中删除,并获得其子树。将这些子树看作(合并为)一个独立的二项堆,再将此堆合并到原先的堆中即可。由于每棵树最多有 棵子树,创建新堆的时间为 。同时合并堆的时间也为 ,故整个操作所需时间为 。
function deleteMin(heap) min = heap.trees().first() for each current in heap.trees() if current.root < min then min = current for each tree in min.subTrees() tmp.addTree(tree) heap.removeTree(min) merge(heap, tmp)
减小特定节点(关键字)的值(Decreasing a key)
在减小特定节点(关键字)的值后,可能会不满足最小堆积性质。此时,将其所在节点与父节点交换,如还不满足最小堆性质则再与祖父节点交换……直到最小堆性质得到满足。操作所需时间为 。
删除
将需要删除的节点的关键字的值减小到负无穷大(比二项堆中的其他所有关键字的值都小即可),执行“减小关键字的值”算法,使其调整到当前二项树的根节点位置,再删除最小关键字的根节点即可。
运行时间
以下对于二项堆操作的运行时间都为 (节点数为 ):
- 在二项堆中插入新节点
- 查找最小关键字所在节点
- 从二项堆中删除最小关键字所在节点
- 减小给定节点关键字的值
- 删除给定节点
- 合并两个二项堆
参见
参考资料
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein(潘金贵等译). 《算法导论》. 机械工业出版社.
- Vuillemin, J. (1978). A data structure for manipulating priority queues. Communications of the ACM 21, 309–314.
外部链接
- (英文)二项堆的Java applet摸拟
- (英文)二项堆的Python实现(页面存档备份,存于互联网档案馆)
- (英文)二项堆的C实现(页面存档备份,存于互联网档案馆)
- (英文)二项堆的Java实现