真核起始因子5

位於14號人類染色體的基因

eIF5(eukaryotic initiation factor 5,真核起始因子5)是一種GTP酶激活蛋白,可以特異性激活eIF2GTP酶活性,而其本身並不具有GTP酶的活性。在真核翻譯起始過程中,當48S前起始複合物結合mRNA,並且使起始Met-tRNA起始密碼子AUG正確配對後,eIF5激活eIF2的GTP酶活性,使得eIF2上結合的GTP水解GDP;之後GDP結合的eIF2從40S核糖體亞基上解離。由於eIF2以及其他真核起始因子的解離之後60S核糖體亞基才能與40S亞基結合,因此eIF5對於形成具有肽基轉移活性的80S核糖體十分關鍵。

真核起始因子5
識別
符號 eIF5
Entrez 1983
OMIM 601710
PDB 2g2k 2iu1 2ful 2e9h
RefSeq NP_001960
UniProt P55010
其他資料
基因座 14 [1]

eIF5還參與與其他多個真核起始因子的相互作用。

結構

 
人類eIF5的N端結構域的溶液結構

eIF5含有N端結構域和C端結構域兩個結構域

其N端結構域為α/β型摺疊,含有兩個具有核苷酸結合活性的亞結構域、一個鋅指結構以及一個在小GTP酶中普遍存在的精氨酸指(arginine finger)。[1]並且N端結構域含有完整的GTP酶激活活性。[2][3]eIF5的N端結構域的氨基酸序列非常保守,表明它能夠在不同的真核生物中發揮類似的GTP酶激活活性。

 
酵母eIF5的C端結構域的晶體結構

eIF5的C端結構域是由α螺旋組成的一個非典型的HEAT結構域,[4][5]其中包含了2個具有兩種序列特徵(芳香性或酸性氨基酸殘基)的結構花樣,被稱為「AA盒」。[6]酵母的研究發現,該結構域可以與eIF2的β亞基(通過AA盒)、eIF1eIF3的c亞基相互作用以促進這些真核起始因子組裝成在真核翻譯起始中發揮關鍵作用的多因子複合物。[7][8]此外,該結構域還可以結合eIF4G[9]eIF5的C端結構域的功能可能是通過蛋白-蛋白間相互作用,來參與翻譯起始進程的調控。

功能機制

eIF5的促eIF2的GTP水解作用是與很多過程相關的。eIF5的C端結構域能夠與eIF2的β亞基的C端結構域相互作用,使得位於eIF5N端結構域的精氨酸指結合eIF2的γ亞基從而激活eIF2γ的GTP酶催化活性以使其結合的GTP水解為GDP。[10]這個水解作用只能發生在40S核糖體亞基上的eIF2所結合的GTP上。並且eIF5還與起始密碼子的識別進程相關,一些研究發現只有起始密碼子正確配對,eIF5才能發揮其促GTP水解作用。[11]

eIF5的GTP酶激活蛋白活性受起始密碼子的配對所調控,使之能夠對AUG起始密碼子的發現作出反應,開始激活eIF2。

參考資料

  1. ^ (英文)Conte MR, Kelly G, Babon J, Sanfelice D, Youell J, Smerdon SJ, Proud CG. Structure of the eukaryotic initiation factor (eIF) 5 reveals a fold common to several translation factors. Biochemistry. 2006, 45: 4550–8. PMID 16584190. 
  2. ^ (英文)Das S, Ghosh R, Maitra U. Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J Biol Chem. 2001, 276: 6720–6. PMID 11092890. 
  3. ^ (英文)Paulin FE, Campbell LE, O'Brien K, Loughlin J, Proud CG. Eukaryotic translation initiation factor 5 (eIF5) acts as a classical GTPase-activator protein. Curr Biol. 2001, 11: 55–9. PMID 11166181. 
  4. ^ (英文)Wei Z, Xue Y, Xu H, Gong W. Crystal structure of the C-terminal domain of S.cerevisiae eIF5. J Mol Biol. 2006, 359: 1–9. PMID 16616930. 
  5. ^ (英文)Bieniossek C, Schütz P, Bumann M, Limacher A, Uson I, Baumann U. The crystal structure of the carboxy-terminal domain of human translation initiation factor eIF5. J Mol Biol. 2006, 360: 457–65. PMID 16781736. 
  6. ^ (英文)Asano K, Krishnamoorthy T, Phan L, Pavitt GD, Hinnebusch AG. Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J. 1999, 18: 1673–88. PMID 10075937. 
  7. ^ (英文)Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, Wagner G, Asano K. The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc Natl Acad Sci U S A. 2005, 102: 16164–9. PMID 16254050. 
  8. ^ (英文)Singh CR, Curtis C, Yamamoto Y, Hall NS, Kruse DS, He H, Hannig EM, Asano K. Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation. Mol Cell Biol. 2005, 25: 5480–91. PMID 15964804. 
  9. ^ (英文)He H, von der Haar T, Singh CR, Ii M, Li B, Hinnebusch AG, McCarthy JE, Asano K. The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol Cell Biol. 2003, 23: 5431–45. PMID 12861028. 
  10. ^ (英文)Das S, Maitra U. Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the beta subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo. Mol Cell Biol. 2000, 20: 3942–50. PMID 10805737. 
  11. ^ (英文)Unbehaun A, Borukhov SI, Hellen CU, Pestova TV. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev. 2004, 18: 3078–93. PMID 15601822. 

參見