林尼克定理
林尼克定理(英語:Linnik's theorem)是解析數論中的一個定理,它回答了一個由狄利克雷定理自然推廣的問題。它聲稱,存在着正數 c 和 L 使得:如果我們用p(a,d)表示最小的素數等差數列
其中 n 跑遍正整數,a 和 d 為任何的互質正整數滿足 1≤ a ≤ d -1,則:
本定理以尤里·林尼克的名字命名,他證明它在1944年。[1][2] 雖然林尼克的證據表明 c 和 L 是 可計算數,但是他沒有提供任何數值。
性質
目前已經知道, L ≤2對於幾乎所有整數d都成立.[3]
在 廣義黎曼假設成立的前提下,有,
也已證實。[5]
目前猜測:
L的邊界
常數 L 稱為林尼克常數 [6]
下表顯示了有關該常數迄今為止取得的進展。
L ≤ | 證實的年份 | 作者 |
10000 | 1957年 | 潘[7] |
5448 | 1958年 | 潘 |
777 | 1965年 | 陳[8] |
630 | 1971年 | 朱提拉 |
550 | 1970年 | 朱提拉 |
168 | 1977年 | 陳[9] |
80 | 1977年 | 朱提拉 |
36 | 1977年 | 格雷厄姆[10] |
20 | 1981年 | 格雷厄姆[11] (之前提交的陳1979年的文件) |
17 | 1979年 | 陳[12] |
16 | 1986年 | 王 |
13.5 | 1989年 | 陳 劉[13][14] |
8 | 1990年 | 王[15] |
5.5 | 1992年 | 希斯-布朗 |
5.18 | 2009年 | 吉羅里斯 |
5 | 2011 | 吉羅里斯 |
此外,在希斯-布朗的結果,常數 c 是有效的可計算數。
參考文獻
- ^ Linnik, Yu. V. On the least prime in an arithmetic progression I. The basic theorem. Rec. Math. (Mat. Sbornik) N.S. 1944, 15 (57): 139–178. MR 0012111.
- ^ Linnik, Yu. V. On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon. Rec. Math. (Mat. Sbornik) N.S. 1944, 15 (57): 347–368. MR 0012112.
- ^ Bombieri, Enrico; Friedlander, John B.; Iwaniec, Henryk. Primes in Arithmetic Progressions to Large Moduli. III. Journal of the American Mathematical Society. 1989, 2 (2): 215–224. JSTOR 1990976. MR 0976723. doi:10.2307/1990976.
- ^ 4.0 4.1 Heath-Brown, Roger. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. 1992, 64 (3): 265–338. MR 1143227. doi:10.1112/plms/s3-64.2.265.
- ^ Lamzouri, Y.; Li, X.; Soundararajan, K. Conditional bounds for the least quadratic non-residue and related problems. Math. Comp. 2015, 84 (295): 2391–2412. arXiv:1309.3595 . doi:10.1090/S0025-5718-2015-02925-1.
- ^ Guy, Richard K. Unsolved problems in number theory. Problem Books in Mathematics 1 Third. New York: Springer-Verlag. 2004: 22. ISBN 978-0-387-20860-2. MR 2076335. doi:10.1007/978-0-387-26677-0.
- ^ Pan, Cheng Dong. On the least prime in an arithmetical progression. Sci. Record. New Series. 1957, 1: 311–313. MR 0105398.
- ^ Chen, Jingrun. On the least prime in an arithmetical progression. Sci. Sinica. 1965, 14: 1868–1871.
- ^ Chen, Jingrun. On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet's $L$-functions. Sci. Sinica. 1977, 20 (5): 529–562. MR 0476668.
- ^ Graham, Sidney West. (學位論文). 缺少或
|title=
為空 (幫助) - ^ Graham, S. W. On Linnik's constant. Acta Arith. 1981, 39 (2): 163–179. MR 0639625. doi:10.4064/aa-39-2-163-179.
- ^ Chen, Jingrun. On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's $L$-functions. II. Sci. Sinica. 1979, 22 (8): 859–889. MR 0549597.
- ^ Chen, Jingrun; Liu, Jian Min. On the least prime in an arithmetical progression. III. Science in China Series A: Mathematics. 1989, 32 (6): 654–673. MR 1056044.
- ^ Chen, Jingrun; Liu, Jian Min. On the least prime in an arithmetical progression. IV. Science in China Series A: Mathematics. 1989, 32 (7): 792–807. MR 1058000.
- ^ Wang, Wei. On the least prime in an arithmetical progression. Acta Mathematica Sinica. New Series. 1991, 7 (3): 279–288. MR 1141242. doi:10.1007/BF02583005.