菱形三十面體

幾何學中,菱形三十面體Rhombic triacontahedron)是一個由菱形構成的三十面體[1],由30個全等黃金菱形組成,具有60條邊和32個頂點,其對偶多面體截半二十面體[2][3]。由於其對偶多面體是一個半正多面體,因此這種立體也屬於卡塔蘭多面體[4]

菱形三十面體
菱形三十面體
(按這裏觀看旋轉模型)
類別卡塔蘭立體
對偶多面體截半二十面體
識別
鮑爾斯縮寫
verse-and-dimensions的wikiaBowers acronym
rhote在維基數據編輯
數學表示法
考克斯特符號
英語Coxeter-Dynkin diagram
node 5 node_f1 3 node 
康威表示法jD
性質
30
60
頂點32
歐拉特徵數F=30, E=60, V=32 (χ=2)
二面角144°
組成與佈局
面的種類V3.5.3.5

黃金菱形
對稱性
對稱群Ih, H3, [5,3], (*532)
旋轉對稱群
英語Rotation_groups
Ih, [5,3]+, (532)
特性
、等面、等邊、環帶
圖像
立體圖

截半二十面體
對偶多面體

展開圖
菱形三十面體的旋轉透視圖。

性質

菱形三十面體是一個卡塔蘭立體[5],由30個面、60條邊和32個頂點組成[5],其中30面為12個全等的黃金菱形,因此是一個環帶多面體[6]。此外,若將菱形三十面體的邊改成與每個面的幾何中心相連接[8],則會形成截半二十面體,因此其對偶多面體截半二十面體[9]

尺寸

若對應的對偶多面體——截半二十面體邊長為單位長,則相應的菱形三十面體的體積[10]

 

而相應幾何體的邊長為[10]

 

由此可以推得,如果一個菱形三十面體的棱長為 ,那麼其體積 與表面積 [2]

 
 

中分球半徑 與內切球半徑 [11]

 
 

其中φ黃金比例

面的組成

組成菱形三十面體的面皆為全等的黃金菱形,其中鈍角角度約為 116.57°,鋭角的角度約為 63.43°,兩條對角線長度與一邊長的比為 ,長短兩對角線長度的比值為黃金比[5]

分割

菱形三十面體可以被分割成20個黃金菱形六面體,包括了10個銳角黃金菱形六面體英語Golden rhombohedra和10個鈍角黃金菱形六面體[12][13]

10 10
 
銳角黃金菱形六面體
 
鈍角黃金菱形六面體

正交投影

菱形三十面體面體有四種具有特殊對稱性的正交投影,分別是以面為中心的正交投影、以邊為中心的正交投影和兩種以頂點為中心的正交投影。其中以為三的頂點為中心的正交投影應於A2考克斯特平面[14][15];以為五的頂點為中心的正交投中,其所形成的菱形可以構成潘洛斯鑲嵌英語Penrose_tiling[16][17]

正交投影
投影對稱性 [2] [2] [6] [10]
投影位置 以面為中心 以邊為中心 為3的頂點 為5的頂點
圖像        
對偶圖像        

星形化體

 
延長菱形三十面體的面可建構菱形六十面體

菱形三十面體透過全部匹配的星形化方式[18]能夠產生227種星形菱形三十面體[19][20]。其中菱形六十面體五複合立方體為較具代表性的星形菱形三十面體。所有的星形菱形三十面體種類非常繁多,共有358,833,098種星形菱形三十面體,其中包括了84,959個鏡像不變的立體和三億餘種具有手性鏡像的立體[18]

其中,菱形六十面體可以透過將菱形三十面體的菱形面沿着長的那一側向外延長稜直到相交來構造[21]

用途

由於菱形三十面體是一種面可遞的立體[22],換句話說,即這立體上的任意兩個面A和B,若透過旋轉或鏡射這個立體,使A移動到B原來的位置時,而兩個面仍然佔據了相同的空間區域[23]。由於這種特性使得菱形三十面體有時會成為30面骰子的設計[24]

菱形三十面體亦可用於裝飾用途上。丹麥設計師Holger Strøm運用菱形三十面體的結構[25]設計了一種可以手工製作的立體燈飾,稱為IQ-light[26],主要以其獨特的數學結構形成光影美感,用於製造氣氛[27]。亦有藝術家使用菱形三十面體與立方體間的幾何關係[2][28]設計出了菱形三十面體造型的收納盒[29]

菱形三十面體圖

菱形三十面體圖
 
分佈3 (20個)
5 (12個)
頂點32
60
半徑6
直徑6
圍長4
自同構群120
色數2
對偶圖截半二十面體圖
屬性平面圖

圖論的數學領域中,與菱形三十面體相關的圖為菱形三十面體圖[11],是菱形三十面體之邊與頂點的圖英語1-skeleton,同時也是拓樸結構與菱形三十面體等架的圖論物件,由32個節點和60條邊組成[30],是一種阿基米德對偶圖[31]。儘管菱形三十面體圖具備邊可遞性質,但不具備點可遞性質,因此菱形三十面體圖不是正則圖[32]

性質

菱形三十面體圖有60條邊和38個頂點,其中為3的頂點有20個;為5的頂點有12個[30]。菱形三十面體圖不是哈密頓圖[30],這意味着菱形三十面體圖無法找到一個不重複走訪頂點來遍歷所有頂點的路徑[33]

 
以類似施萊格爾圖英語schlegel diagram的方式呈現的菱形三十面體圖
 
菱形三十面體圖的另一種表示法
  • 菱形三十面體圖的特徵多項式[30]
     

參見

參考文獻

  1. Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979. ISBN 0-486-23729-X.  (Section 3-9)
  1. ^ Weisstein, Eric W. (編). Triacontahedron. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  2. ^ 2.0 2.1 2.2 Weisstein, Eric W. (編). Rhombic Triacontahedron. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  3. ^ Livio Zefiro, DIP.TE.RIS. Review of the alternative choices concerning face colouring of all the regular convex polyhedra and a pair of Catalan polyhedra, the rhombic dodecahedron and the rhombic triacontahedron. mi.sanu.ac.rs. [2020-08-05]. (原始內容存檔於2020-07-11). 
  4. ^ The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [1] (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 287, pentagonal icosikaitetrahedron)
  5. ^ 5.0 5.1 5.2 Can, Zeynep and Kaya, Rüstem; et al. On the metrics induced by icosidodecahedron and rhombic triacontahedron. KoG (Hrvatsko društvo za geometriju i grafiku). 2015, 19 (19.): 17–23. 
  6. ^ George W. Hart. Zonohedrification. The Mathematica Journal. 1999, vol. 7 (no. 3) [2018-08-29]. (原始內容存檔於2018-11-14). 
  7. ^ Wenninger, Magnus, Dual Models, Cambridge University Press, 1983, ISBN 0-521-54325-8, MR 0730208 
  8. ^ Wenninger (1983)[7], "Basic notions about stellation and duality", p. 1.
  9. ^ Koca, Mehmet and Koca, Nazife and Koc, Ramazan. Catalan solids derived from three-dimensional-root systems and quaternions. Journal of Mathematical Physics. 2010-04, 51. doi:10.1063/1.3356985. 
  10. ^ 10.0 10.1 Catalan Solids: Rhombic Triacontahedron. dmccooey.com. [2020-08-05]. (原始內容存檔於2018-05-08). 
  11. ^ 11.0 11.1 Wolfram, Stephen. "Rhombic triacontahedron". from Wolfram Alpha: Computational Knowledge Engine, Wolfram Research. [7 January 2013] (英語). 
  12. ^ Laszlo C Bardos. Golden Rhombohedra. cutoutfoldup.com. [2020-08-05]. (原始內容存檔於2016-04-05). 
  13. ^ George W. Hart. Dissection of the rhombic triacontahedron. Virtual Polyhedra. 1996 [2020-08-05]. (原始內容存檔於2021-04-16). 
  14. ^ 約翰·史坦布里奇英語John Stembridge. Coxeter Planes. math.lsa.umich.edu. (原始內容存檔於2018-02-10) (英語). 
  15. ^ 約翰·史坦布里奇英語John Stembridge. More Coxeter Planes. math.lsa.umich.edu. (原始內容存檔於2017-08-21) (英語). 
  16. ^ Kemp, Martin, Science in culture: A trick of the tiles, Nature, 2005, 436 (7049): 332, Bibcode:2005Natur.436..332K, doi:10.1038/436332a 
  17. ^ Livio, Mario, The Golden Ratio: The Story of Phi, the World's Most Astonishing Number, New York: Broadway Books: 206, 2002 
  18. ^ 18.0 18.1 Webb, R. "Enumeration of Stellations.". software3d.com. [2019-09-06]. (原始內容存檔於2019-04-27). 
  19. ^ Pawley, G. S. The 227 triacontahedra. Geometriae Dedicata (Kluwer Academic Publishers). 1975, 4 (2–4): 221–232. ISSN 1572-9168. doi:10.1007/BF00148756. 
  20. ^ Messer, P. W. Stellations of the Rhombic Triacontahedron and Beyond. Structural Topology. 1995, 21: 25–46. 
  21. ^ Kabai, Sándor. "Mathematical Graphics I: Lessons in Computer Graphics Using Mathematica.". Püspökladány, Hungary: Uniconstant. 2002: pp. 171, 179, 181. 
  22. ^ Isohedral Rhombohedra. orchidpalms.com. [2020-08-05]. (原始內容存檔於2021-04-10). 
  23. ^ McLean, K. Robin, Dungeons, dragons, and dice, The Mathematical Gazette, 1990, 74 (469): 243–256, JSTOR 3619822 .
  24. ^ George W. Hart. Polyhedral Dice. Virtual Polyhedra. 1996 [2020-08-05]. (原始內容存檔於2021-04-26). 
  25. ^ Halo Design Group, Geometry, IQ light. halodesign.dk. 
  26. ^ The IQlight concept. halodesign.dk. 
  27. ^ 創客漾思:IQ Light立體燈DIY. 國立頻東大學圖書館. [失效連結]
  28. ^ Weisstein, Eric W. (編). Compound of Five Cubes. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  29. ^ triacontahedron box - KO Sticks LLC. kosticks.com. [2020-08-05]. (原始內容存檔於2021-05-02). 
  30. ^ 30.0 30.1 30.2 30.3 Weisstein, Eric W. (編). Rhombic Triacontahedral Graph. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  31. ^ Weisstein, Eric W. (編). Archimedean Dual Graph. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  32. ^ Weisstein, Eric W. (編). Semisymmetric Graph. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  33. ^ Weisstein, Eric W. (編). Hamiltonian Cycle. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 

外部連結