過截角五維正六胞體

過截角五維正六胞體是一種均勻五維多胞體,為五維正六胞體經由過截角變換後的像。

過截角五維正六胞體
類型五維均勻多胞體
維度5
數學表示法
考克斯特符號
英語Coxeter-Dynkin diagram
node 3 node_1 3 node_1 3 node 3 node 
施萊夫利符號t1,2{3,3,3,3}
性質
四維12
6 t12{3,3,3}
6 t{3,3,3}
60
45 {3,3}
15 t{3,3}
140
80 {3}
60 {6}
150
頂點60
組成與佈局
頂點圖
對稱性
考克斯特群A5 [3,3,3,3], order 720
特性
convex

坐標

簡單地說,過截角五維正六胞體的頂點坐標為六維空間的(0,0,0,1,2,2)(0,0,1,2,2,2)的全排列。

投影

正射投影
Ak
考克斯特平面
A5 A4
Graph
二面體群 [6] [5]
Ak
考克斯特平面
A3 A2
Graph
二面體群 [4] [3]

參考文獻

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]頁面存檔備份,存於網際網路檔案館
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. 5D uniform polytopes (polytera). bendwavy.org.  x3x3o3o3o - tix, o3x3x3o3o - bittix

外部連結