甲狀腺激素β受體

位於3號人類染色體的基因

甲狀腺激素β受體(TR-β,或THR-β)也稱為核受體亞家族1,A 組,成員2(NR1A2),是一種核受體蛋白,在人類中由THR-β基因編碼。[7][8]

甲狀腺激素β受體
已知的結構
PDB直系同源搜索: PDBe RCSB
識別號
別名THRB;, C-ERBA-2, C-ERBA-BETA, ERBA2, GRTH, NR1A2, PRTH, THR1, THRB1, THRB2, thyroid hormone receptor beta, TRbeta
外部IDOMIM190160 MGI98743 HomoloGene36025 GeneCardsTHRB
相關疾病
selective pituitary resistance to thyroid hormone、​generalized resistance to thyroid hormone[1]
為以下藥物的標靶
反三碘甲狀腺原氨酸、​替拉曲可、​三碘甲腺原氨酸、​左旋甲狀腺素鈉[2]
基因位置(人類
3號染色體
染色體3號染色體[3]
3號染色體
甲狀腺激素β受體的基因位置
甲狀腺激素β受體的基因位置
基因座3p24.2起始24,117,153 bp[3]
終止24,495,756 bp[3]
RNA表達模式
查閱更多表達數據
直系同源
物種人類小鼠
Entrez
Ensembl
UniProt
mRNA​序列

NM_001113417
​NM_009380

蛋白序列

NP_001106888
​NP_033406

基因位置​(UCSC)Chr 3: 24.12 – 24.5 MbChr 14: 4.43 – 4.81 Mb
PubMed​查找[5][6]
維基數據
檢視/編輯人類檢視/編輯小鼠

功能

該基因編碼的蛋白質為三碘甲腺原氨酸的核激素受體。它是甲狀腺激素的多種受體之一,已被證明可以調節甲狀腺激素的生物活性。小鼠基因敲除研究表明,不同的受體雖然具有一定程度的冗餘,但可能介導甲狀腺激素的不同功能。已知該基因的缺陷是導致:廣泛性 甲狀腺激素抵抗(GTHR)的成因。該綜合徵疾病的特徵為:甲狀腺腫大;循環甲狀腺激素(T3-T4)水平增加;同時促甲狀腺激素(TSH)正常或略微升高。現已發現到該基因的幾種轉錄變體,但迄今為止只觀察到一種的全長天然基因。[9]

基因互作

甲狀腺激素β受體已被證明與以下存在基因相互作用

參考文獻

  1. ^ 與甲状腺激素β受体相關的疾病;在維基數據上查看/編輯參考. 
  2. ^ 對Thyroid hormone receptor beta起作用的藥物;在維基數據上查看/編輯參考. 
  3. ^ 3.0 3.1 3.2 GRCh38: Ensembl release 89: ENSG00000151090 - Ensembl, May 2017
  4. ^ 4.0 4.1 4.2 GRCm38: Ensembl release 89: ENSMUSG00000021779 - Ensembl, May 2017
  5. ^ Human PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  6. ^ Mouse PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  7. ^ Entrez Gene: THRA thyroid hormone receptor, alpha (erythroblastic leukemia viral (v-erb-a) oncogene homolog, avian). 
  8. ^ Sakurai A, Nakai A, DeGroot LJ. Structural analysis of human thyroid hormone receptor beta gene. Mol. Cell. Endocrinol. June 1990, 71 (2): 83–91. PMID 1973914. S2CID 54389426. doi:10.1016/0303-7207(90)90245-4. 
  9. ^ Entrez Gene: THRB thyroid hormone receptor, beta (erythroblastic leukemia viral (v-erb-a) oncogene homolog 2, avian). 
  10. ^ 10.0 10.1 Monden T, Wondisford FE, Hollenberg AN. Isolation and characterization of a novel ligand-dependent thyroid hormone receptor-coactivating protein. J. Biol. Chem. November 1997, 272 (47): 29834–41. PMID 9368056. doi:10.1074/jbc.272.47.29834 . 
  11. ^ Lin HM, Zhao L, Cheng SY. Cyclin D1 Is a Ligand-independent Co-repressor for Thyroid Hormone Receptors. J. Biol. Chem. August 2002, 277 (32): 28733–41. PMID 12048199. doi:10.1074/jbc.M203380200 . 
  12. ^ 12.0 12.1 Liu Y, Takeshita A, Misiti S, Chin WW, Yen PM. Lack of coactivator interaction can be a mechanism for dominant negative activity by mutant thyroid hormone receptors. Endocrinology. October 1998, 139 (10): 4197–204. PMID 9751500. doi:10.1210/endo.139.10.6218 . 
  13. ^ 13.0 13.1 Jeyakumar M, Tanen MR, Bagchi MK. Analysis of the functional role of steroid receptor coactivator-1 in ligand-induced transactivation by thyroid hormone receptor. Mol. Endocrinol. June 1997, 11 (6): 755–67. PMID 9171239. doi:10.1210/mend.11.6.0003 . 
  14. ^ Lee SK, Jung SY, Kim YS, Na SY, Lee YC, Lee JW. Two distinct nuclear receptor-interaction domains and CREB-binding protein-dependent transactivation function of activating signal cointegrator-2. Mol. Endocrinol. February 2001, 15 (2): 241–54. PMID 11158331. doi:10.1210/mend.15.2.0595 . 
  15. ^ Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, Jhun BH, Cheong JH, Lee YC, Meltzer PS, Lee JW. A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo. J. Biol. Chem. November 1999, 274 (48): 34283–93. PMID 10567404. doi:10.1074/jbc.274.48.34283 . 
  16. ^ Ko L, Cardona GR, Chin WW. Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. Proc. Natl. Acad. Sci. U.S.A. May 2000, 97 (11): 6212–7. Bibcode:2000PNAS...97.6212K. PMC 18584 . PMID 10823961. doi:10.1073/pnas.97.11.6212 . 
  17. ^ Ko L, Cardona GR, Iwasaki T, Bramlett KS, Burris TP, Chin WW. Ser-884 adjacent to the LXXLL motif of coactivator TRBP defines selectivity for ERs and TRs. Mol. Endocrinol. January 2002, 16 (1): 128–40. PMID 11773444. doi:10.1210/mend.16.1.0755 . 
  18. ^ Tagami T, Lutz WH, Kumar R, Jameson JL. The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators. Biochem. Biophys. Res. Commun. December 1998, 253 (2): 358–63. PMID 9878542. doi:10.1006/bbrc.1998.9799. 
  19. ^ Ando S, Sarlis NJ, Krishnan J, Feng X, Refetoff S, Zhang MQ, Oldfield EH, Yen PM. Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance. Mol. Endocrinol. September 2001, 15 (9): 1529–38. PMID 11518802. doi:10.1210/mend.15.9.0687 . 
  20. ^ Zhu XG, Park KS, Kaneshige M, Bhat MK, Zhu Q, Mariash CN, McPhie P, Cheng SY. The orphan nuclear receptor Ear-2 is a negative coregulator for thyroid hormone nuclear receptor function. Mol. Cell. Biol. April 2000, 20 (7): 2604–18. PMC 85476 . PMID 10713182. doi:10.1128/MCB.20.7.2604-2618.2000. 
  21. ^ Wu Y, Delerive P, Chin WW, Burris TP. Requirement of helix 1 and the AF-2 domain of the thyroid hormone receptor for coactivation by PGC-1. J. Biol. Chem. March 2002, 277 (11): 8898–905. PMID 11751919. doi:10.1074/jbc.M110761200 . 

擴展閱讀


甲狀腺激素β受體引用了美國國家醫學圖書館提供的資料,這些資料屬於公共領域