抽象代數中,幺半群,又稱為單群亞群獨異點具幺半群四分之三群(英語:Monoid)是指一個帶有可結合二元運算單位元代數結構

群論


么半群在許多的數學分支中都會出現。在幾何學中,幺半群捉取了函數複合的概念;更確切地,此一概念是從範疇論中抽象出來的,之中的幺半群是個帶有一個物件的範疇。幺半群也常被用來當做電腦科學的堅固代數基礎;在此,變換幺半群語法幺半群被用來描述有限狀態自動機,而跡幺半群英語Trace monoid歷史幺半群英語History monoid則是做為進程演算並行計算的基礎。幺半群的研究中一些較重要的結論有克羅恩-羅德斯定理星高問題英語Star height problem

定義

幺半群是一個帶有二元運算 *: M × MM 的集合 M ,其符合下列公理:

  • 結合律:對任何在 M 內的abc , (a*b)*c = a*(b*c) 。
  • 單位元:存在一在 M 內的元素e,使得任一於 M 內的 a 都會符合 a*e = e*a = a

通常也會多加上另一個公理:

  • 封閉性:對任何在 M 內的 aba*b 也會在 M 內。

但這不是必要的,因為在二元運算中即內含了此一公理。

另外,幺半群也可以說是帶有單位元半群

幺半群除了沒有逆元素之外,滿足其他所有的公理。因此,一個帶有逆元素的幺半群和群是一樣的。

生成元和子幺半群

幺半群 M子幺半群是指一個在 M 內包含著單位元且具封閉性(即若x,yN ,則 x*yN )的子集 N。很明顯地, N 自身會是個幺半群,在導自 M 的二元運算之下。等價地說,子幺半群是一個子集 N ,其中 N=N* ,且上標 * 為克萊尼星號。對任一於 M 內的子集 N 而言,子幺半群 N* 會是包含著 N 的最小幺半群。

子集 N 被稱之為 M生成元,若且唯若 M=N*。若 N 是有限的, M 即被稱為是有限生成的。

可交換幺半群

運算為可交換的幺半群稱之為可交換幺半群(或稱為阿貝爾幺半群)。可交換幺半群經常會將運算寫成加號。每個可交換幺半群都自然會有一個它自身的代數預序 ≤ ,定義為下: x ≤ y 若且唯若存在 z 使得 x+z=y 。可交換幺半群 M序單位是一個在 M 內的元素 u ,其中對任一在 M 內的元素 x 而言,總會存在一個正整數 n 使得 x ≤ nu。這經常用在 M偏序阿貝爾群 G正錐體的情況,在這種情況下我們稱 uG 的序-單位。有接受任何交換幺半群,並把它變成全資格阿貝爾群的代數構造;這個構造叫做格羅滕迪克群

部分可交換幺半群

運算只對某些元素而不是所有元素是交換性的的幺半群是跡幺半群;跡幺半群通常出現在並發計算理論中。

例子

  • 每一個單元素集合 {x}都可給出一個單元素(當然)幺半群。對定固的x,其幺半群是唯一的,當其幺半群公理在此例子必須滿足x*x=x時。
  • 每一個都是幺半群,且每一個阿貝爾群都是可交換幺半群。
  • 每一半格都是等冪可交換幺半群。
  • 任一個半群S都可以變成幺半群,簡單地加上一不在S內的元素e,並定義ee=e和對任一在S內的ses=s=se
  • 自然數N是加法及乘法上的可交換幺半群。
  • 以加法或乘法為運算,任何單作的元素
  • 矩陣加法矩陣乘法為運算,所有於一環內n×n矩陣所組成的集合

某些固定字母Σ的有限字元串所組成的集合,會是個以字元串串接為運算的幺半群。空字元串當成單位元。這個幺半群標記為Σ*,並稱為在Σ內的自由幺半群

  • 給定一幺半群M,並考慮包含其所有子集冪集P(M)。這些子集的二元運算可以定義成S * T = {s * t : sS內且 tT內}。這使得P(M)變成了具有單位元{e}的幺半群。依同樣的方法,一個群的冪集是一在群子集的乘積下的幺半群。
  • S為一集合。由所有函數SS所組成的集合會是在複合函數下的幺半群。其單位元為恆等函數。若S為有限的且有n個元素,其幺半群也會是有限的,且有nn個元素。
  • 廣義化上述的例子,設C為一範疇XC內的一對象。由X所有自同態組成的集合,標記為EndC(X),是一在態射複合下的幺半群。更多有關範疇論和幺半群的關係請見下述。
  • 連通和下的閉流形同態所組成的集合,其單位元為一般二維球面類。此外,當a標記為環面類且b標記為射影平面類,此一幺半群的每一個元素c都會有一唯一的表示式c=na+mb,其中n是大於等於零的整數,m為0、1或2,且會有3b=a+b
  • <f>是一個數為n的循環幺半群,亦即 。然後, ,其中 。事實上,不同的k會給出不同的幺半群,且每個幺半群都會和另一個同構

此外,f也可以想成在點 上的函數,給定如下

 

或等價地表示成

 

 元素間的乘法即由複合函數給定。

注意當 時,函數f 的置換,並給出個數為n的唯一循環群

性質

在一幺半群內,可以定義一元素x的正整數冪:x1=xxn=x*...*x (乘上n次),其中n>1。冪的規則xn+p=xn*xp則是很明顯的。

由定義可以證明其單位元e是唯一的。然後,對任一x,可以設x0e,則其冪的規則在非負冪中依然會是成立的。

逆元素:一元素x稱為可逆,若存在一元素y,使得x*y = ey*x = e。此一元素y便稱做x的逆元素。結合律使得其逆元素(若存在)是唯一的。

yx的逆元素,則可以定義x的負冪,以x−1=yx−n=y*...*y (乘上n次),其中n>1。如此冪的規則在所有整數就都成立了,這也是為什麼x的逆元素通常會寫做x−1。所有在幺半群M內的可逆元素,和其自身的運算可組成一個。在這意思之下,每個幺半群都含有一個群。

但並不是每個幺半群都包含在一個群內的。例如,絕對可能有一個幺半群,其兩個元素ab會有a*b=a的關係,即使b不是單位元。如此的幺半群是不可能包含於一個群內的, 因為在群裡,兩邊一同乘a的逆元素,就會得到b = e的結果,但這不是真的。一個幺半群(M,*)若具有消去性,即表示對任何在M內的abca*b = a*c永遠意指b = cb*a = c*a也永遠意指b = c。一具有消去性的可交換幺半群總是可以包含於一個群內。這是為什麼整數(加法運算下的群)可以由自然數(具有消去性的加法運算下的可交換幺半群)建立。但一具有消去性的不可交換幺半群則一定不可能包含於一個群之中。

若一幺半群有消去性且是有限的,它會是一個群。

一可逆幺半群為一幺半群,其任一在M內的a,總存在一唯一在M內的a-1,使得a=aa-1a且a-1=a-1aa-1

一幺半群G的子幺半群是G的子集H,其包含有單位元,且若xy屬於H,則xy屬於H。很清楚地,H本身也是個幺半群,在G的二元運算之下。

作用和算子幺半群

算子幺半群是一作用在集合X上的幺半群M。亦即,存在一運算$ : M × XX符合幺半群的運算。

  • 對任一在X內的xe$x=x
  • 對任何在M內的ab及在X內的xa $ (b $ x) = (a * b) $ x。) = (a * b) • x.

運算子幺半群也叫做作用(因為它們類似於群作用), 轉移系統, 半自動機或變換半群。

幺半群同態

兩個幺半群(M, *)和(M′, @)之間的同態是一個函數f : MM′,會有如下兩個性質:

  • f(x*y) = f(x)@f(y) 對所有在M內的xy
  • f(e) = e

其中ee′分別是MM′的單位元。

不是每一個群胚同態都會是個幺半群同態,因為它不一定會維持單位元。和上述不同,群同態的情況則會成立:群論的公理確保每一兩群之間的群胚同態都會維持住單位元。對於幺半群,這不是永遠成立的,而必須有另外的要求。

雙射幺半群同態稱做幺半群同構

幺半群同餘和商幺半群

幺半群同餘是相容於幺半群乘積的等價關係。就是說它是子集

 

使得它是自反的、對稱的和傳遞的(如同所有等價關係必須的那樣),還要有如果    對於所有 M 中的   ,則有   的性質。

幺半群同餘引發同餘類

 

而幺半群運算 * 引發在同餘類上的二元運算  :

 

它是幺半群同態。它明顯的也是結合的,所以所有同餘類的集合也是幺半群。這個幺半群叫做商幺半群,可以寫為

 

一些額外的符號是公用的。給定子集  ,寫

 

對於引發自 L 的同餘類的集合。在這個表示法中,明顯的  。但是一般的說,  不是幺半群。走相反的方向,如果   是商幺半群的子集,寫

 

當然這只是 X 的成員的併集。一般的說,  不是幺半群。

明顯的有   

和範疇論的關係

類似群的結構
完全性 結合律 單位元 除法
幺半群
半群
環群
擬群
原群
廣群
範疇

幺半群可視之為一類特殊的範疇。幺半群運算滿足的公理同於範疇中從一個對象到自身的態射。換言之:

幺半群實質上是只有單個對象的範疇。

精確地說,給定一個幺半群 (M,*),可構造一個只有單個對象的小範疇,使得其態射由 M 的元素給出,而其合成則由 幺半群的運算 * 給出。

同理,幺半群之間的同態不外是這些範疇間的函子。就此意義來說,範疇論可視為是幺半群概念的延伸。許多關於幺半群的定義及定理皆可推廣至小範疇。

幺半群一如其它代數結構,本身也形成一個範疇,記作 Mon,其對象是幺半群而態射是幺半群的同態。

範疇論中也有么半對象的概念,它抽象地定義了何謂一個範疇中的幺半群。

參考文獻

  • John M. Howie, Fundamentals of Semigroup Theory (1995), Clarendon Press, Oxford. ISBN 0-19-851194-9

外部連結