正规子群
在抽象代数中,正规子群或不变子群指一类特殊的子群。由正规子群,可以引导出商群的概念。埃瓦里斯特·伽罗瓦是最早认识到正规子群的重要性的人。
定义
如果群G的子群N在共轭变换下不变,N即是一个正规子群;就是说对于每个N中元素n和每个G中的元素g,元素gng−1仍在N中。我们写为
下列条件等价于子群N在G中是正规子群。其中任何一个都可以用作定义:
- N 在 G 的元素诱导的共轭变换下不变,即对于G中的所有g,gNg−1 =N。
- N 在 G 的元素诱导的共轭变换下的象集为自己的子集,即对于G中的所有g,gNg−1 ⊆ N。
- N在G中的左陪集的集合和右陪集的集合是一致的。
- 对于G中的所有g,gN = Ng。
- N是G的若干共轭类的并集。
- G 中的任何两个元素,在相乘后是正规子群成员的关系下是可交换的,即 。
- 存在以N为核的G的群同态: 。
注意条件(1)逻辑上弱于条件(2),条件(3)逻辑上弱于条件(4)。为此,条件(1)和条件(3)经常用来证明N在G中是正规子群,而条件(2)和(4)用来证明N在G中是正规子群的推论;而这些条件,尤其条件(7),可用于证明一个群不是单群。
陪集和正规子群
给定一个群G,以及G的一个子群H,G的一个元素a,集合:
- 称作H关于a的左陪集。a叫做aH的代表元。
类似地,可以定义H关于a的右陪集:
- 。
可以证明:对于G中的两个元素a、b, 。因此aH和bH只有两种关系:相等,或交集为空,即 或者 。
于是群G可以被分解成:
这个分解称作群G的左陪集分解。类似地有群G的右陪集分解:
进一步地,可以证明由 所定义的关系是一个等价关系,集合中的每个等价关系都可确定一个等价类,因此每个 是一个等价类。每个 中含有的元素个数是相等的。
此外,群G的左陪集分解与群G的右陪集分解间存在同构:
因此H的左陪集个数和右陪集个数是相等的,叫做H对G的指数。
对于一般的H,集合 关于子集的积并不是一个群。对于G中的元素a、b,子集的积 ,但对于 ,不一定有 。群G的正规子群或不变子群H使得 关于子集的积是这个群的子群。这时H的左陪集和右陪集是一样的,统称陪集。陪集组成的群叫做G关于H的商群,记作 。商群的目数等于H对G的指数。
例子
- {e}和G自身总是G的正规子群,这两个正规子群又称作G的平凡正规子群,而其他所有的正规子群都是非平凡的正规子群。如果G只有平凡正规子群,就叫做简单群。
- 群G的中心是G的正规子群。
- 群G的交换子群是G的正规子群。
- 一个阿贝尔群(或交换群)的所有子群都是它的正规子群,因为显然有gH = Hg。不是阿贝尔群,但全部子群都是正规子群的群叫做哈密尔顿群(Hamiltonian group),阶数最小的例子是四元数单位 对乘法构成的群 。
- 任何有限维欧几里得空间中,平移群都是欧几里得群的正规子群。比如说在3维空间中,先旋转,平移,再作原来旋转的逆,结果是原来的平移。先做镜面对称,平移,再作原来镜面对称的逆,还是原来的平移。将平移按长度分类,就得到一个等价类。平移群是各种长度的平移的并集。
性质
- 满同态保持正规子群的性质,逆映射也是一样。