图同态
数学分支图论中,图同态(英语:graph homomorphism)是两幅图之间保结构的映射。具体而言,该映射将某图的各顶点映至另一图的顶点,且若两顶点相邻,则其像仍然相邻。
同态是若干种图着色概念的推广,适用于表达一类重要的约束满足问题,如排程、频段分配问题。[1]同态可以复合,为全体图组成的类赋予丰富的代数结构:其上的预序关系、分配格结构、范畴结构(分为无向图范畴与有向图范畴两种)。[2]欲寻找任意两图间的同态,而无额外条件,则现时所知的计算复杂度高得不切实际,但对于某些特定类别的图,已知有多项式时间算法。此类问题易解与否,两者的分野,是活跃的研究方向。[3]
定义
本条目中,除非另有声明,否则“图”皆为有限无向图,允许自环,但无重边(两点间连多于一条边)。自 至另一图 的图同态[4] ,记作
是顶点集 至 的函数,其将 每条边的两端分别映至 某边的两端。以符号表示:对 中每对顶点 ,若 ,则 。若存在 至 的同态,则称 同态于(homomorphic to) ,或可染 色( -colourable),常简记为:
上述定义可引伸至有向图,此时, 为同态的条件是, 中每条有向边 的像 ,仍是 的有向边。
自 至 有单同态(将不同顶点映至不同顶点),当且仅当 为 的子图。若同态 为双射(两图顶点集的一一对应),且其逆 亦是图同态,则 为图同构。[5]
图的覆叠映射是一类特殊的图同态,相当于将图视为拓扑空间时,拓扑学上的覆叠映射,其定义及性质亦是类似:[6]图覆叠是满同态(即作为陪域的图,其每个顶点皆为定义域某顶点的像),且局部为双射,即若限制到每个顶点的邻域,则为双射。举例,图的典范双重复叠,是将每点 分裂为 两点,并将原图每条边 换成交叉的两条边 、 。如此,可以定义函数将 和 皆映至 ,既是图同态,也是覆叠映射。
图同胚是另一个概念,不一定是同态。粗略而言,同胚要求是单射,但不必将边映至边,允许映至路径。图子式的要求更松。
核与回缩
若两幅图 和 有同态 及 ,则称两者同态等价(homomorphically equivalent)。[4]该些映射不必单,也不必满。例如,完全二部图 与 同态等价,因为可将 左部两个顶点映到 左部同一个顶点,其右部的两个顶点映到 右部一个顶点,同样有 的同态。
收缩映射(retraction)是自图 至其子图 的同态 ,且对 中每个顶点 有 。若有此种映射,则 称为 的收缩核(retract)。[7]
核图(core)没有到任何真子图的同态。亦可等价定义成无法收缩到任何真子图的图。[8]每幅图 皆同态等价于唯一的核图(不辨同构之别),称为 的核(the core of )。[9]此结论对无穷图不一定成立[10],但对(有限的)有向图可以照套用同样的定义,每幅有向图同态等价于唯一的核图。图(或有向图)的核,必为原图某个收缩核,以及某个导出子图。[7]
举例,完全图 及奇环(奇数条边的循环图)皆属核图。若 可染三色,且有三角形(即子图 ),则 同态等价于 ,原因是 的三染色,下节将说明相当于同态 ,且另一方面,任意子图皆有同态嵌入到 ,故有 。如此,证毕 为所有此种 的核。与之相似,每幅非空二部图(有至少一条边)皆等价于 。[11]
与染色的关联
对正整数 ,图 的 染色是将每个顶点涂 色之一,使每条边的两端都不同色。此种染色,与自 至完全图 的同态,两类物件一一对应[12],因为 的各顶点对应 种色,且若 为颜色,则其于图 相邻当且仅当 。于是,某函数是 至 的同态,当且仅当该函数将 中相邻的顶点映至不同颜色(即 染色的定义)。换言之, 可染 色等价于可染 色。[12]
若有同态 及 ,则两者复合可得同态 。[13]所以,若 可染 色,且有同态 ,则 同样可染 色。因此, 推出 ,其中 表示图的色数[注 1]。[14]
变式
其他同态亦可视作特殊的染色。给定图 ,其顶点视为可用的颜色,每条边表示某两色“可兼容”,则 的 染色就是将相邻顶点染成相容颜色的方案。此框架可容纳许多图染色的概念,将其表述为射向各类图的同态。举例如下:
- 循环染色可定义为至循环完全图[注 2]的同态,从而推广一般的染色,定义“分数”色数。[15]
- 分数染色与b重染色可定义成射向克内泽尔图的同态。[16]
- T染色的可用色集为自然数集 ,但另有给定某子集 ,禁止相邻顶点所染颜色之差属于 。此种染色对应往某幅无穷图的同态。[17]
- 有向染色除禁止相邻顶点同色外,还限制不同颜色之间的所有边皆同向(例如由蓝至红)。此为映向有向图的同态。[18]
- L(2,1)染色以数表示颜色,要求距离为1(相邻)的顶点所染颜色之差至少为2,而距离为2的顶点染色之差至少为1。换言之,此为射向路图 之补的同态,且要求局部为单射,即在每个顶点的邻域上为单射。[19]
无长路径的定向
图同态与图定向也有关。无向图 的定向是赋予每边一个方向(二选一),所得的有向图。同一幅无向图可以有多种不同的定向。举例,完全图 可定向成“递移循环赛图” ,其顶点为 ,对所有 有(有向)边自 指向 。给定 的定向与 的定向之间的同态,忘掉定向即得本来无向图之间的同态。另一方面,给定无向图同态 , 任何定向 可以拉回到 的定向 ,使原同态亦是 的有向图同态。综上,无向图 可染 色(即有同态至 ),当且仅当 有某定向,具有至 的同态。[20]
有定理流传[注 3],对每个 ,有向图 有同态至 ,当且仅当 个顶点的有向路径图 [注 4]无同态至 。[21]
因此,某图可 染色,当且仅当其有某定向,不容任何自 至该定向的同态。此命题可加强成
高洛伊-哈塞-罗伊-维塔韦尔定理:某图可 染色,当且仅当该图有某定向,其中无长为 的有向路径(即 作为子图)。
与前一命题的分别在于,自 至某图的同态允许将两顶点映至同处,但“长为 的有向路径”不允许重复顶点。
与约束满足问题的关联
范例
某些排程问题可用图同态建模。[22][23]设学校已知各学生所选科目,要编排今学期各专题讨论班的时间,使同一学生所选的讨论班时间不致太近。考虑图 以各科为顶点,若两科有共同学生则连边,而图 以各课节为顶点,若两个时段隔足够远则连边。举例若限制时间表须每周循环,且每个学生所选的讨论班须相隔一日,则对应的 是环 的补图。如此, 的图同态,就是讨论班对应到课节的合适方案。[22]欲添加额外条件,如禁止学生同时于周五与周一有讨论班,衹需从 删掉相应的边。
无线电的频段分配问题简述如下:无线网络中,有若干发讯机,要为每部机配置一个频率,供其发讯。为免干扰,地理位置较近的发讯机应选用相差较远的频率。若将条件中“地理较近”与“频率较远”简化至非黑即白,则合适的分配方案又可视为图同态 。图 的顶点为各发讯机,边表示两机地理上接近;图 以各频段为顶点,边则表示两频段相隔够远。虽然此模型甚为简化,但是尚有保留一点弹性:若有两机相隔较远,但仍因地形导致可能干扰,则在 中加边即可。反之,若有两机永不在同一时段发讯,则不论其地理位置是否靠近,皆可从 中删去该边。同样,或许有某些频率相差颇远,但是互为谐波,导致干扰,则将该边自 移除即可[24]
前述模型经简化,若要实际应用,许多问题仍待解决。[25]约束满足问题是图同态问题的推广,能表达更多种条件(例如个体偏好,或重复分配次数有上限),从而建立更实际的数学模型。
抽象观点
数理逻辑或泛代数中,图与有向图属关系结构的特例,即集合配备若干关系。有向图就是基集(顶点集)之上有独一个二元关系(邻接关系)。[26][3]如是观之,图作为关系结构的同态,按抽象代数的同态定义,等同于本文的图同态。一般而言,欲寻找自某关系结构至另一关系结构的同态,属于约束满足问题(constraint satisfaction problem, CSP)。图的特例可作为第一步,帮助理解更复杂的CSP。许多寻找图同构的算法,包括回溯、约束传播、局部搜索,通用于各种CSP。[3]
给定图 、 ,问是否有同态 ,相当于仅得一类约束的CSP实例[3]:CSP的“变量”是 的顶点,每个变量的“域”(可取值的范围)是 的顶点集。“赋值”是一个函数,将逐个变量映至域的元素,即函数 。 的每条边(或有向边) 对应一个“约束” ,限制赋值函数将边 映至关系 中,即映至 的某边。CSP的“解”是满足全体约束的赋值,故前述CSP的解正是自 至 的同态。
同态的结构
同态的复合仍是同态[13],故可知图的 关系具递移性,又显然自反,所以其为图之间的预序。[27]同态等价意义下,记 所属等价类为 ,每个等价类有唯一的核图为其代表。关系 定义该些等价类之间的偏序,即同态等价类构成一个偏序集。[28]
以 表示 有同态至 ,但反之则不然。如此定义的序 稠密,即对任意(无向)图 ,若 ,则存在第三幅图 使 ,除非是平凡反例 或 。[29][30]例如,任意两幅整数阶完全图(除 外)之间,必有无穷多幅环状完全图,相当于整阶数之间的有理数阶数。[31]
同态等价类的偏序集是分配格,并 是互斥并 ,而交 是图张量积 ,其定义不取决于等价类中所选的代表 。[32]此格中,并不可约元[注 5]正好是连通图,证明方式是留意同态衹会将连通图映到目标的一个连通分支中。[33][34]交不可约元[注 5]正好是积性图(multiplicative graphs),此种图 的特性是,若乘积 有同态至 ,则 或 两者之一有同态至 。如何识别积性图是赫德米猜想[35]的关键。[36][37]
图与同态还组成范畴:图是物件,而同态是态射。[38]范畴的始物件是空图 ,终物件有一个顶点和一个自环。图张量积是范畴论积,指数图[注 6]是该范畴的指数物件。换言之,自 的同态与 的同态自然地一一对应。[37][39]由于对任意图 ,张量积 与幂 总有定义,图范畴是笛卡儿闭范畴。同理,同态等价类组成的格实际上是海廷代数:按海廷代数的语言,前述的积称为交运算 ,而前述的指数运算称为蕴涵 。[37][39]
对于有向图,适用同样的定义。同样有 是有向图同态等价类之间的偏序,其与无向图等价类的偏序 有别,但后者是前者的子序,因为无向图亦可视为有向图,衹是其中每条有向边 皆与其反向 成对出现。换言之,无向图同态的定义,与双向有向图的同态并无区别。有向图的 序仍是分配格和海延代数,交与并的定义亦同上,但分别在于,该序并不稠密。亦有以有向图为物件、同态为态射的范畴,照样笛卡儿闭。[40][39]
不可比图
同态预序下,许多图不可比较。两幅不可比图(incomparable graphs)之间,并无自任意一幅至另一幅的同态。[41]欲构造此种图,可考虑图的奇围长,即最短的奇环长度。奇围长可等价地说成最小的奇数 ,使 个顶点的循环图 有同态至 。由此定义,若 ,则 的奇围长大于或等于 的奇围长。[42]
另一方面,前节已证若 ,则 的色数小于或等于 的色数。所以,若 的奇围长及色数皆严格大于 ,则 和 不可比较。[41] 举例,格勒奇图色数为 ,且无三角形(围长 ,奇围长 )[43],所以与三角形 不可比。
有几类图的奇围长和色数可取任意大,如克内泽尔图[44]与广义梅切尔斯基图[45]。如此一类图,若使其两参数同时递增,排成一列,则有无穷多幅不可比图(同态预序下的反链)。[46] 同态预序稠密等其他性质,亦可利用此类图证明。[47]此外,可构造同时具大色数和大围长(不仅是奇围长)的图,但较复杂,见围长 (图论) § 围长与图染色。
有向图之中,更易找到不可比图。例如,考虑有向环 ,顶点为 ,有向边自 至 (对 各一),及自 至 。对于 , 至 有同态当且仅当 为 的倍数。所以,当 取质数值时, 两两不可比。[48]
计算复杂度
图同态问题是给定一对图 ,求自 至 的图同态。对应的决定性问题问是否存在此种解。一般情况下,即询问的实例 不受额外限制的情况下,此决定性问题为NP完全。[49]若限制询问的范围,衹限从某类图中选出 或 ,则可得多种不同的问题,其中有些较易求解。限制左边 和限制右边 相比,适用的方法相去甚远,但两者似乎有一共同特点:难易情况之间似乎有明确的分界,此分界或者已获证,或有论文猜想如此。
至给定图的同态
图同态问题若固定右边的图 不变,则称为染 色问题。 为完全图 时,化成染k色问题,在 时,可于多项式时间内求解,但其馀情况则是NP完全。[50] 的情况相当于问图 可否染 色,即是否二部图,此问题可在线性时间内求解。更一般地,衹要 是二部图就有同一结论:可染 色等价于可染 色,即可染二色,故此种情况同样易判断。可染 色和可染 色分别等价于无顶点和无边,亦易判断。[51]帕沃尔·黑尔和雅罗斯拉夫·内舍特日尔证明,对无向图而言,无其他情况可驯顺:
上述定理又称为无向图同态的“对分定理”(dichotomy theorem),因为将染 色问题分成NP完全与P两类,而无居中情况。有向图情况较复杂,此时问题等价于刻画看似更一般的约束满足问题的复杂度[54]:有向图的染 色问题,与允许各种约束条件的CSP相比,同样多姿多彩,而不失一般性。[55][56]严格而言,定义(有限)约束语言(constraint language,或称模板template) 为一个有限的取值域,其上配备有限多种关系,然后以 表示约束衹能选自 的一类约束满足问题,则有以下定理:
直观理解,定理意味着任何算法技巧或复杂度结论,若适用于一般有向图 的染 色问题,则可套用至一般CSP。考虑将黑尔-内舍特日尔定理扩展至有向图。由上述定理,该推广等价于有关CSP对分的费德-瓦迪猜想(又称CSP猜想、对分猜想),即断言对任意约束语言 , 或属NP完全,或属P。[49]此猜想于2017年由德米特里·祖克(Dmitry Zhuk)与安德烈·布拉托夫(Andrei Bulatov)分别独立证出,故有以下推论:
(布拉托夫2017年;祖克2017年)给定 时,有向图的染 色问题或属P,或属NP完全。
自给定族的同态
若左输入 为给定,则图同态问题有暴力解法,即穷举 的各个顶点在 中的像,复杂度仅为 ,已是输入 的多项式函数。[57]换言之,限制 的大小时,问题显然属P,但仍可改为研究另一课题:除大小之外,是否其他限制可施加于 ,使图同态问题可于多项式时间内求解?
研究表明,关键性质是树阔,此参数衡量一幅图有多似一棵树。若 的树阔至多为 ,而 为任意图,则利用标准的动态规划方法,可于 时间内求解图同态问题。实际甚至衹需假设 的核的树阔不逾 ,而无需知道其核为何。[58][59]
该 算法中,复杂度的指数可能无法再压低太多:若指数时间假设[注 7](ETH)为真,则不存在时间复杂度为 的算法。即使限制 衹能取值为某一族图,衹要该族图的树阔无上界,则仍有同样结论。[60]同样假设下,几乎没有其他性质使问题可于多项式时间内求解,具体含义如下:
(格罗厄)假定ETH,并给定由图组成的可计算族 。考虑输入为 ,且 的图同态问题。此问题属P当且仅当 中各图之核的树阔有界。[59]
或考虑有所取舍,允许复杂度高度依赖 ,换取复杂度与 的关系仅为固定的多项式。与前段类似,若 的取值范围中,核的树阔有界,则此目标可以实现,但若 的取值范围不满足该条件,则无法达成。[59]利用带参数复杂度术语,上述成果可覆述为: 中的同态问题,以 的边数为参数,呈现对分现象。若 中各图之核的树阔有上界,则该问题为固定参数可驯顺,否则为W[1]完全。
同一命题对其他关系结构亦成立。换言之,其适用于一般的约束满足问题,不过需要限制各项约束涉及的变量数有上界,即关系的元数有上界(以图为例,仅得元数为2的关系)。此时,关键参数为原始约束图[注 8]的树阔。[60]
参见
注
- ^ 使该图可染 色的最小 值。
- ^ 取 至 为 个顶点,相异两点 间有连边当且仅当模 运算时, 大于某定值。
- ^ 数学流传,谓难以溯源或原创者并无正式投稿出版,但广为研究者熟知的定理。
- ^ 的顶点为 ,且对每个 有一条边自 至 。
- ^ 5.0 5.1 为并不可约,意即 推出 或 。对偶概念为交不可约。
- ^ 指数图(exponential graph) 的顶点是函数 ,两顶点 连边当且仅当对 中任意两个相邻顶点 ,有 与 在 中相邻。
- ^ 指数时间假设与P ≠ NP类似,皆是未获证的复杂度假设,但前者更强。
- ^ 约束满足问题中,以变数为顶点,两变数有出现在同一个约束中则连边,可得“原始约束图”。此即以各约束为边的超图的原始图。
参考资料
- ^ Hell & Nešetřil 2004,第27页.
- ^ Hell & Nešetřil 2004,第109页.
- ^ 3.0 3.1 3.2 3.3 Hell & Nešetřil 2008.
- ^ 4.0 4.1 引论见诸:Cameron (2006); Hahn & Tardif (1997); Hell & Nešetřil (2004). 由短至长排。
- ^ Hahn & Tardif 1997,Observation 2.3.
- ^ Godsil & Royle 2001,第115页.
- ^ 7.0 7.1 Hell & Nešetřil 2004,第19页.
- ^ Hell & Nešetřil 2004,Proposition 1.31.
- ^ Cameron 2006,Proposition 2.3; Hell & Nešetřil 2004,Corollary 1.32.
- ^ Hell & Nešetřil 2004,第34页.
- ^ Cameron 2006,第4页,Proposition 2.5.
- ^ 12.0 12.1 Cameron 2006,第1页; Hell & Nešetřil 2004,Proposition 1.7.
- ^ 13.0 13.1 Hell & Nešetřil 2004,§1.7.
- ^ Hell & Nešetřil 2004,Corollary 1.8.
- ^ Hell & Nešetřil 2004,§6.1; Hahn & Tardif 1997,§4.4.
- ^ Hell & Nešetřil 2004,§6.2; Hahn & Tardif 1997,§4.5.
- ^ Hell & Nešetřil 2004,§6.3.
- ^ Hell & Nešetřil 2004,§6.4.
- ^ Fiala, J.; Kratochvíl, J., Partial covers of graphs [图之部分覆盖], Discussiones Mathematicae Graph Theory, 2002, 22 (1): 89–99, S2CID 17507393, doi:10.7151/dmgt.1159 (英语)
- ^ Hell & Nešetřil 2004,第13–14页.
- ^ Hell & Nešetřil 2004,Proposition 1.20.
- ^ 22.0 22.1 Cameron 2006,第1页.
- ^ Hell & Nešetřil 2004,§1.8.
- ^ Hell & Nešetřil 2004,第30–31页.
- ^ Hell & Nešetřil 2004,第31–32页.
- ^ Hell & Nešetřil 2004,第28页,该书称关系结构(relational structures)为“关系系统”(relational systems)。
- ^ Hell & Nešetřil 2004,§3.1.
- ^ Hell & Nešetřil 2004,Theorem 3.1.
- ^ Hell & Nešetřil 2004,Theorem 3.30; Hahn & Tardif 1997,Theorem 2.33.
- ^ Welzl, E., Color-families are dense [染色族稠密], Theoretical Computer Science, 1982, 17: 29–41, doi:10.1016/0304-3975(82)90129-3 (英语)
- ^ Hell & Nešetřil 2004,第192页; Hahn & Tardif 1997,第127页.
- ^ Hell & Nešetřil 2004,Proposition 3.2,分配律载于Proposition 2.4;又见Hahn & Tardif 1997,Theorem 2.37.
- ^ Kwuida, Léonard; Lehtonen, Erkko, On the Homomorphism Order of Labeled Posets [论标号偏序集之同态序], Order, 2011, 28 (2): 251–265, S2CID 14920600, arXiv:0911.0200 , doi:10.1007/s11083-010-9169-x (英语)
- ^ Gray 2014,Lemma 3.7.
- ^ 译名见 陈宏宾. 捉住黑暗中的微光,年輕數學家希多夫擊破[赫德米猜想]. UniMath. 2020-02-22 [2021-12-21]. (原始内容存档于2021-12-21).
- ^ Tardif, C., Hedetniemi's conjecture, 40 years later [赫德米猜想四十年] (PDF), Graph Theory Notes of New York, 2008, 54: 46–57 [2021-12-21], MR 2445666, (原始内容 (PDF)存档于2021-07-12) (英语).
- ^ 37.0 37.1 37.2 Dwight, D.; Sauer, N., Lattices arising in categorial investigations of Hedetniemi's conjecture [以范畴论研究赫德米猜想所得的格], Discrete Mathematics, 1996, 152 (1–3): 125–139, doi:10.1016/0012-365X(94)00298-W (英语)
- ^ Hell & Nešetřil 2004,第125页.
- ^ 39.0 39.1 39.2 Gray 2014.
- ^ Brown et al. 2008.
- ^ 41.0 41.1 Hell & Nešetřil 2004,第7页.
- ^ Hahn & Tardif 1997,Observation 2.6.
- ^ Weisstein, Eric W. (编). Grötzsch Graph. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
- ^ Hahn & Tardif 1997,Proposition 3.14.
- ^ Gyárfás, A.; Jensen, T.; Stiebitz, M., On Graphs With Strongly Independent Color-Classes [论色类强独立之图], Journal of Graph Theory, 2004, 46 (1): 1–14, doi:10.1002/jgt.10165
- ^ Hell & Nešetřil 2004,Proposition 3.4.
- ^ Hell & Nešetřil 2004,第96页.
- ^ Hell & Nešetřil 2004,第35页.
- ^ 49.0 49.1 Bodirsky 2007,§1.3.
- ^ Hell & Nešetřil 2004,§5.1.
- ^ Hell & Nešetřil 2004,Proposition 5.1.
- ^ Hell & Nešetřil 2004,§5.2.
- ^ Hell, Pavol; Nešetřil, Jaroslav. On the complexity of H-coloring [论染H色之复杂度]. Journal of Combinatorial Theory, Series B. 1990, 48 (1): 92–110. doi:10.1016/0095-8956(90)90132-J (英语).
- ^ Hell & Nešetřil 2004,§5.3.
- ^ Hell & Nešetřil 2004,Theorem 5.14.
- ^ 56.0 56.1 Feder, Tomás; Vardi, Moshe Y. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory [单调单子SNP与约束满足之计算结构:藉Datalog与群论研究]. SIAM Journal on Computing. 1998, 28 (1): 57–104 [2022-02-06]. doi:10.1137/S0097539794266766. (原始内容存档于2022-02-06) (英语).
- ^ Cygan, M.; Fomin, F. V.; Golovnev, A.; Kulikov, A. S.; Mihajlin, I.; Pachocki, J.; Socała, A. Tight bounds for graph homomorphism and subgraph isomorphism [图同态与子图同构之紧限界]. 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016). SIAM: 1643–1649. 2016. Bibcode:2015arXiv150703738F. ISBN 978-1-611974-33-1. arXiv:1507.03738 (英语).
- ^ Dalmau, Víctor; Kolaitis, Phokion G.; Vardi, Moshe Y. Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics [约束满足、有界树阔、有限变数逻辑]. 8th International Conference on Principles and Practice of Constraint Programming (CP 2002): 310–326. 2002. doi:10.1007/3-540-46135-3_21 (英语).
- ^ 59.0 59.1 59.2 Grohe, Martin, The complexity of homomorphism and constraint satisfaction problems seen from the other side [同态与约束满足之复杂度,自另一方面观之], Journal of the ACM, 2007, 54 (1): 1–es, S2CID 11797906, doi:10.1145/1206035.1206036 (英语)
- ^ 60.0 60.1 Marx, Dániel, Can You Beat Treewidth? [可以胜过树阔乎?], Theory of Computing, 2010, 6: 85–112, doi:10.4086/toc.2010.v006a005 (英语)
一般书目、解说
- Cameron, P. Graph Homomorphisms, Combinatorics Study Group Notes [图同态,组合研习小组讲义] (PDF). 2006 [2022-02-12]. (原始内容 (PDF)存档于2021-05-07) (英语).
- Hell, Pavol; Nešetřil, Jaroslav. Graphs and Homomorphisms [图与同态]. Oxford Lecture Series in Mathematics and Its Applications 28. Oxford University Press. 2004 [2022-02-12]. ISBN 0-19-852817-5. (原始内容存档于2021-05-06) (英语).
- Hahn, G.; Tardif, C. Graph homomorphisms: structure and symmetry [图同态:结构与对称]. Graph Symmetry: Algebraic Methods and Applications [图对称:代数方法及应用] (PDF). Springer. 1997: 107–166 [2022-02-12]. doi:10.1007/978-94-015-8937-6_4. (原始内容 (PDF)存档于2021-07-11) (英语).
- Godsil, C.; Royle, G. 6. Homomorphisms [6、同态]. Algebraic Graph Theory [代数图论]. Graduate Texts in Mathematics 207. Springer–Verlag New York. 2001. ISBN 978-1-4613-0163-9. doi:10.1007/978-1-4613-0163-9 (英语).
约束满足、泛代数
- Bodirsky, M. Graph Homomorphisms and Universal Algebra, Course Notes [图同态与泛代数,讲义] (PDF). 2007 [2022-02-12]. (原始内容 (PDF)存档于2022-05-01) (英语).
- Hell, Pavol; Nešetřil, Jaroslav. Colouring, constraint satisfaction, and complexity [染色、约束满足、复杂度] (PDF). Computer Science Review. 2008, 2 (3): 143–163 [2022-02-12]. doi:10.1016/j.cosrev.2008.10.003. (原始内容 (PDF)存档于2017-07-06) (英语).
格论、范畴论
- Brown, R.; Morris, I.; Shrimpton, J.; Wensley, C. D. Graphs of morphisms of graphs [图态射之图]. Electronic Journal of Combinatorics. 2008, 15 (1): A1 [2022-02-12]. doi:10.37236/919 . (原始内容存档于2021-07-11) (英语).
- Gray, C. T. The Digraph Lattice [有向图之格] (PDF). 2014 [2022-02-12]. (原始内容 (PDF)存档于2022-01-20) (英语).