VDAC1
电压依赖性阴离子选择性通道1(VDAC1)是一种β桶蛋白,在人类中是由5号染色体上的VDAC1基因所制造[4][5]。此蛋白质会在线粒体外膜(OMM)和细胞膜中形成离子通道:在OMM上,ATP通过该离子通道而能自线粒体扩散至细胞质;在细胞膜中,VDAC1则参与体积的调节。在所有真核细胞中,线粒体皆负责ATP的合成,并同时合成其他细胞存活所需的代谢物,VDAC1也因而参与线粒体和细胞间的通信,进而调节细胞代谢和死亡之间的平衡。除代谢物的渗透外,VDAC1还可作为己糖激酶等蛋白质的支架,参与代谢过程的调节。[6]
此条目翻译品质不佳。 (2018年8月15日) |
该蛋白质是电压依赖性阴离子通道,与其他VDAC同种型(VDAC2和VDAC3)具有高度结构同源性,其参与细胞代谢、线粒体凋亡和精子发生的调节。[7][8][9][10]该通道的过度表达和错误调节可导致细胞凋亡,导致体内多种疾病。特别是,由于VDAC1是主要的阴离子离子转运通道,其功能障碍与癌症,帕金森病(PD)和阿尔茨海默病有关。[11][12][13]
结构
三种VDAC同种型(VDAC1,VDAC2和VDAC3)具有高度保守的DNA序列以及形成宽β-桶结构的3D结构,其中α螺旋N-末端区段驻留以部分闭合通道。[14]VDAC1的结构由3个独立的实验室通过X射线晶体学,核磁共振(NMR)光谱学或两者的组合来解决。这些结构研究中的两个用于确定人VDAC1(hVDAC1)结构,而X射线晶体学用于解决鼠VDAC1(mVDAC1)结构,其仅与hVDAC1相差仅两个残基。[15][16][17]这些确定的结构与先前的圆二色研究一致,该研究预测了α螺旋和β链结构域的存在。[18]
mVDAC1的结构分析显示由19个两亲性β-链组成的桶状通道,其N-末端和C-末端均朝向线粒体的膜间隙。[19][20]β-链通过环转连接并以反平行模式排列,除了平行的β-链1和19。[17]通道的高度为40Ẳ,在开口处跨越27Ẳ-20Ẳ的距离,并在打开状态下在N端α-螺旋段处逐渐减小至20Ẳ×14Ẳ。[21]闭合状态构象尚未被确定。另外,N-末端具有α螺旋区段,其通过与β-折叠8-18链上的残基的疏水相互作用而保持在通道的内壁。[17]该N-末端可以用作离子移动或蛋白质附着的支架。一个这样的例子被看作是HK1结合的位点。[6]要指出的重要残基是位于氨基酸链上第73个残基的谷氨酸(E73)。该残基存在于VDAC1和VDAC2中,但不存在于VDAC3中。该带电残基的侧链指向磷脂双层,这通常会引起排斥力。然而,E73与VDAC1功能和相互作用有关。[22]
功能
VDAC1属于线粒体孔蛋白家族,并且预测与其他VDAC同种型具有相似的生物学功能。[23]在三种同种型中,VDAC1是主要的钙离子转运通道,并且转录最多。[12][24]VDAC1通过在线粒体外膜(OMM)上运输ATP和其他小代谢物参与细胞代谢,从而允许调节TCA循环,并通过延伸,调节活性氧(ROS)的产生。[11]在酵母细胞中,ROS响应于氧化应激而累积,这导致线粒体功能受损和“小”表型。然而,小型酵母细胞表现出比野生型细胞更长的寿命,并且表明VDAC1在例如衰老类似情况下的保护功能。[6][24]
临床意义
电压依赖性阴离子通道在离子和代谢物转运中都起作用,尽管它们的生理作用是不同的。由于它们的作用,通道的功能障碍可导致各种疾病。 VDAC1通过与抗凋亡蛋白家族,Bcl-2蛋白,特别是Bcl-xl和Mcl-1的相互作用而与癌症有关,这些蛋白在癌症过程中过表达。这两种Bcl-2蛋白与VDAC1相互作用以调节穿过OMM的钙离子转运,并最终调节ROS的产生。虽然高水平的ROS诱导细胞死亡,但非致死水平会干扰信号转导通路,从而促进癌细胞的细胞增殖,迁移和侵袭。[11]此外,VDAC1过表达与增加的凋亡反应和抗癌药物和治疗功效相关,进一步支持VDAC1作为癌症治疗的治疗靶标。[11][25]
VDAC1在钙离子转运中的功能也与神经退行性疾病有关。在PD中,VDAC1增加线粒体内的钙离子水平,导致线粒体通透性增加,线粒体膜电位破坏,ROS产生增加,细胞死亡和神经元变性。[12]已显示VDAC1与淀粉样蛋白β(Aβ)相互作用,导致通道的电导增加并最终导致细胞凋亡。[13]
参考文献
- ^ 1.0 1.1 1.2 GRCm38: Ensembl release 89: ENSMUSG00000020402 - Ensembl, May 2017
- ^ Human PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Mouse PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Blachly-Dyson, E.; Baldini, A.; Litt, M.; McCabe, E. R.; Forte, M. Human genes encoding the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane: mapping and identification of two new isoforms. Genomics. 1994-03-01, 20 (1): 62–67 [2018-08-15]. ISSN 0888-7543. PMID 7517385. doi:10.1006/geno.1994.1127. (原始内容存档于2018-08-15).
- ^ VDAC1 voltage dependent anion channel 1 [Homo sapiens (human)] - Gene - NCBI. www.ncbi.nlm.nih.gov. [2018-08-15]. (原始内容存档于2018-08-21).
- ^ 6.0 6.1 6.2 Reina, Simona; Palermo, Vanessa; Guarnera, Andrea; Guarino, Francesca; Messina, Angela; Mazzoni, Cristina; De Pinto, Vito. Swapping of the N-terminus of VDAC1 with VDAC3 restores full activity of the channel and confers anti-aging features to the cell. FEBS letters. 2010-07-02, 584 (13): 2837–2844 [2018-08-15]. ISSN 1873-3468. PMID 20434446. doi:10.1016/j.febslet.2010.04.066. (原始内容存档于2018-08-15).
- ^ Subedi, Krishna Prasad; Kim, Joon-Chul; Kang, Moonkyung; Son, Min-Jeong; Kim, Yeon-Soo; Woo, Sun-Hee. Voltage-dependent anion channel 2 modulates resting Ca²+ sparks, but not action potential-induced Ca²+ signaling in cardiac myocytes. Cell Calcium. 2011-2, 49 (2): 136–143 [2018-08-15]. ISSN 1532-1991. PMID 21241999. doi:10.1016/j.ceca.2010.12.004. (原始内容存档于2018-08-21).
- ^ Alvira, Cristina M.; Umesh, Anita; Husted, Cristiana; Ying, Lihua; Hou, Yanli; Lyu, Shu-Chen; Nowak, Jeffrey; Cornfield, David N. Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production. American Journal of Respiratory Cell and Molecular Biology. 2012-11, 47 (5): 669–678 [2018-08-15]. ISSN 1535-4989. PMC 3547107 . PMID 22842492. doi:10.1165/rcmb.2011-0436OC. (原始内容存档于2018-08-15).
- ^ Cheng, Emily H. Y.; Sheiko, Tatiana V.; Fisher, Jill K.; Craigen, William J.; Korsmeyer, Stanley J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science (New York, N.Y.). 2003-07-25, 301 (5632): 513–517 [2018-08-15]. ISSN 1095-9203. PMID 12881569. doi:10.1126/science.1083995. (原始内容存档于2018-08-21).
- ^ Li, Zhonghua; Wang, Yongqiang; Xue, Yanfei; Li, Xiaoqi; Cao, Hong; Zheng, Shijun J. Critical Role for Voltage-Dependent Anion Channel 2 in Infectious Bursal Disease Virus-Induced Apoptosis in Host Cells via Interaction with VP5. Journal of Virology. 2012-2, 86 (3): 1328–1338. ISSN 0022-538X. PMC 3264341 . PMID 22114330. doi:10.1128/JVI.06104-11.
- ^ 11.0 11.1 11.2 11.3 Huang, H; Shah, K; Bradbury, N A; Li, C; White, C. Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation. Cell Death & Disease. 2014-10, 5 (10): e1482. ISSN 2041-4889. PMC 4237246 . PMID 25341036. doi:10.1038/cddis.2014.419.
- ^ 12.0 12.1 12.2 Chu, Yaping; Goldman, Jennifer G.; Kelly, Leo; He, Yinzhen; Waliczek, Tracy; Kordower, Jeffrey H. Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson's disease. Neurobiology of Disease. 2014-09, 69: 1–14 [2018-08-15]. ISSN 0969-9961. doi:10.1016/j.nbd.2014.05.003. (原始内容存档于2022-03-20).
- ^ 13.0 13.1 Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy. The Journal of Biological Chemistry. 2015-12-25, 290 (52): 30670–30683. ISSN 0021-9258. PMC 4692199 . PMID 26542804. doi:10.1074/jbc.M115.691493.
- ^ Amodeo, Giuseppe Federico; Scorciapino, Mariano Andrea; Messina, Angela; De Pinto, Vito; Ceccarelli, Matteo. Charged Residues Distribution Modulates Selectivity of the Open State of Human Isoforms of the Voltage Dependent Anion-Selective Channel. PLoS ONE. 2014-08-01, 9 (8). ISSN 1932-6203. PMC 4146382 . PMID 25084457. doi:10.1371/journal.pone.0103879.
- ^ Bayrhuber, Monika; Meins, Thomas; Habeck, Michael; Becker, Stefan; Giller, Karin; Villinger, Saskia; Vonrhein, Clemens; Griesinger, Christian; Zweckstetter, Markus. Structure of the human voltage-dependent anion channel. Proceedings of the National Academy of Sciences of the United States of America. 2008-10-07, 105 (40): 15370–15375. ISSN 0027-8424. PMC 2557026 . PMID 18832158. doi:10.1073/pnas.0808115105.
- ^ Hiller, Sebastian; Garces, Robert G.; Malia, Thomas J.; Orekhov, Vladislav Y.; Colombini, Marco; Wagner, Gerhard. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science (New York, N.Y.). 2008-08-29, 321 (5893): 1206–1210. ISSN 0036-8075. PMC 2579273 . PMID 18755977. doi:10.1126/science.1161302.
- ^ 17.0 17.1 17.2 Ujwal, Rachna; Cascio, Duilio; Colletier, Jacques-Philippe; Faham, Salem; Zhang, Jun; Toro, Ligia; Ping, Peipei; Abramson, Jeff. The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proceedings of the National Academy of Sciences of the United States of America. 2008-11-18, 105 (46): 17742–17747. ISSN 0027-8424. PMC 2584669 . PMID 18988731. doi:10.1073/pnas.0809634105.
- ^ Shanmugavadivu, Baladhandapani; Apell, Hans-Jürgen; Meins, Thomas; Zeth, Kornelius; Kleinschmidt, Jörg H. Correct Folding of the β-Barrel of the Human Membrane Protein VDAC Requires a Lipid Bilayer. Journal of Molecular Biology. 2007-04, 368 (1): 66–78 [2018-08-15]. ISSN 0022-2836. doi:10.1016/j.jmb.2007.01.066. (原始内容存档于2021-05-25).
- ^ McCommis, Kyle S.; Baines, Christopher P. The Role of VDAC in Cell Death: Friend or Foe?. Biochimica et Biophysica Acta. 2012-6, 1818 (6): 1444–1450. ISSN 0006-3002. PMC 3288473 . PMID 22062421. doi:10.1016/j.bbamem.2011.10.025.
- ^ Tomasello, Marianna F.; Guarino, Francesca; Reina, Simona; Messina, Angela; De Pinto, Vito. The Voltage-Dependent Anion Selective Channel 1 (VDAC1) Topography in the Mitochondrial Outer Membrane as Detected in Intact Cell. PLoS ONE. 2013-12-06, 8 (12) [2018-08-15]. ISSN 1932-6203. PMC 3855671 . PMID 24324700. doi:10.1371/journal.pone.0081522. (原始内容存档于2022-04-02).
- ^ Teijido, Oscar; Ujwal, Rachna; Hillerdal, Carl-Olof; Kullman, Lisen; Rostovtseva, Tatiana K.; Abramson, Jeff. Affixing N-terminal α-Helix to the Wall of the Voltage-dependent Anion Channel Does Not Prevent Its Voltage Gating. The Journal of Biological Chemistry. 2012-03-30, 287 (14): 11437–11445. ISSN 0021-9258. PMC 3322836 . PMID 22275367. doi:10.1074/jbc.M111.314229.
- ^ Keinan, Nurit; Pahima, Hadas; Ben-Hail, Danya; Shoshan-Barmatz, Varda. The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. Biochimica Et Biophysica Acta. 2013-7, 1833 (7): 1745–1754 [2018-08-15]. ISSN 0006-3002. PMID 23542128. doi:10.1016/j.bbamcr.2013.03.017. (原始内容存档于2018-08-21).
- ^ Lee, Mi-Jung; Kim, Jee-Youn; Suk, Kyoungho; Park, Jae-Hoon. Identification of the Hypoxia-Inducible Factor 1α-Responsive HGTD-P Gene as a Mediator in the Mitochondrial Apoptotic Pathway. Molecular and Cellular Biology. 2004-5, 24 (9): 3918–3927. ISSN 0270-7306. PMC 387743 . PMID 15082785. doi:10.1128/MCB.24.9.3918-3927.2004.
- ^ 24.0 24.1 De Pinto, Vito; Guarino, Francesca; Guarnera, Andrea; Messina, Angela; Reina, Simona; Tomasello, Flora M.; Palermo, Vanessa; Mazzoni, Cristina. Characterization of human VDAC isoforms: a peculiar function for VDAC3?. Biochimica Et Biophysica Acta. 2010-6, 1797 (6-7): 1268–1275 [2018-08-15]. ISSN 0006-3002. PMID 20138821. doi:10.1016/j.bbabio.2010.01.031. (原始内容存档于2018-08-21).
- ^ Weisthal, Shira; Keinan, Nurit; Ben-Hail, Danya; Arif, Tasleem; Shoshan-Barmatz, Varda. Ca(2+)-mediated regulation of VDAC1 expression levels is associated with cell death induction. Biochimica Et Biophysica Acta. 2014-10, 1843 (10): 2270–2281 [2018-08-15]. ISSN 0006-3002. PMID 24704533. doi:10.1016/j.bbamcr.2014.03.021. (原始内容存档于2018-08-15).