窄带隙半导体

窄带隙半导体是指带隙小于0.5 eV,或红外吸收截止波长超过2.5微米的半导体材料。更广义的定义包括带隙小于(1.1 eV)的所有半导体。[1] [2] 现代太赫兹[3]红外[4]热成像[5] 技术均基于此类半导体。

窄带隙材料应用于红外探测器和红外领域,以实现卫星遥感[6]、远程通讯的光子集成电路[7] [8] [9]无人驾驶车辆的Li-Fi系统[10] [11] [12] [13]。这种半导体材料也是太赫技术的材料基础,其应用包括探测隐藏武器安全监视系统[14] [15] [16]太赫兹断层扫描的安全医疗和工业成像系统 [17] [18] [19],以及介电尾场加速器[20] [21] [22]。 此外,嵌入窄带隙半导体的热光伏英语Thermophotovoltaic energy conversion 发电可讲传统太阳能发电系统中浪费的部分能量转化为可用电能,该部分能量占据了太阳光谱的49%左右[23] [24]。 航天和深海应用,以及真空物理装置中,常使用窄带隙半导体来实现超低温冷却[25] [26]

在尖端研发中,窄带隙半导体被制成纳米材料,其强烈的电子空穴耦合会与增加的量子限制效应相互作用[27],这给描述和设计带来了特殊的挑战。麻省理工学院兰克斯提出的“兰克斯模型”扩展了k·p 方法来解决电子能带边缘的非抛物线性问题,但又缺乏精确性[28]。 使用超级计算机利用密度泛函理论进行第一性原理计算,虽然可以得到更精确的能带曲率,但其对算力和算时的要求都太大。 唐爽崔瑟豪斯夫人提出的“唐-崔瑟豪斯理论[29] [30] 引入了一种低维多带迭代法,以渐进式方法解决了这个问题,并得到了通用汽车的数据支持。[31] [32]

2012年4月12日,麻省理工学院官网以封面新闻报道唐爽崔瑟豪斯提出的“唐-德雷塞尔豪斯理论”,该理论提出了低维多带迭代法。

窄带隙半导体列表

材料 化学式 能隙 (300 K)
碲化汞镉英语Mercury cadmium telluride Hg1−xCdxTe II-VI 0 to 1.5 eV
碲化汞锌英语Mercury zinc telluride Hg1−xZnxTe II-VI 0.15 to 2.25 eV
硒化铅 PbSe IV-VI 0.27 eV
硫化铅 PbS IV-VI 0.37 eV
碲化铅 PbTe IV-VI 0.32 eV
砷化铟 InAs III-V 0.354 eV
锑化铟 InSb III-V 0.17 eV
锑化镓 GaSb III-V 0.67 eV
砷化镉 Cd3As2 II-V 0.5 to 0.6 eV
碲化铋 Bi2Te3 0.21 eV
碲化亚锡 SnTe IV-VI 0.18 eV
硒化亚锡 SnSe IV-VI 0.9 eV
硒化银 Ag2Se 0.07 eV
硅化镁 Mg2Si II-IV 0.79 eV[33]

相关条目

参考

  1. ^ Li, Xiao-Hui. Narrwo-Bandgap Materials for Optoelectronics Applications. Frontiers of Physics. 2022, 17: 13304 [2023-08-04]. doi:10.1007/s11467-021-1055-z. (原始内容存档于2023-08-04). 
  2. ^ Chu, Junhao; Sher, Arden. Physics and Properties of Narrow Gap Semiconductors. Springer. [2023-08-04]. ISBN 9780387747439. (原始内容存档于2023-08-04). 
  3. ^ Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. National Association of Broadcasters Engineering Handbook. Taylor and Francis. 2007: 7 [2023-08-04]. ISBN 978-1-136-03410-7. (原始内容存档于2023-08-04). 
  4. ^ Avraham, M.; Nemirovsky, J.; Blank, T.; Golan, G.; Nemirovsky, Y. Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS. Micromachines. 2022, 13 (5). doi:10.3390/mi13050703 . 
  5. ^ Hapke B. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press. 19 January 2012: 416. ISBN 978-0-521-88349-8. 
  6. ^ Lovett, D. R. Semimetals and narrow-bandgap semiconductors; Pion Limited: London, 1977; Chapter 7.
  7. ^ Inside Telecom Staff. How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure?. Inside Telecom. 30 July 2022 [20 September 2022]. (原始内容存档于2023-06-11). 
  8. ^ Awad, Ehab. Bidirectional Mode Slicing and Re-Combining for Mode Conversion in Planar Waveguides. IEEE Access. October 2018, 6 (1): 55937. S2CID 53043619. doi:10.1109/ACCESS.2018.2873278 . 
  9. ^ Vergyris, Panagiotis. Integrated photonics for quantum applications. Laser Focus World. 16 June 2022 [20 September 2022]. (原始内容存档于2022-11-28). 
  10. ^ Comprehensive Summary of Modulation Techniques for LiFi | LiFi Research. www.lifi.eng.ed.ac.uk. [2018-01-16]. (原始内容存档于2023-09-13). 
  11. ^ The Infrared Array Camera (IRAC). Spitzer Space Telescope. NASA / JPL / Caltech. [13 January 2017]. (原始内容存档于13 June 2010). 
  12. ^ Szondy, David. Spitzer goes "Beyond" for final mission. New Atlas. 28 August 2016 [13 January 2017]. (原始内容存档于2023-08-04). 
  13. ^ Szondy, David. Spitzer goes "Beyond" for final mission. New Atlas. 28 August 2016 [13 January 2017]. (原始内容存档于2023-08-04). 
  14. ^ "Space in Images – 2002 – 06 – Meeting the team"页面存档备份,存于互联网档案馆).
  15. ^ Space camera blazes new terahertz trails页面存档备份,存于互联网档案馆). timeshighereducation.co.uk. 14 February 2003.
  16. ^ Winner of the 2003/04 Research Councils' Business Plan Competition – 24 February 2004. epsrc.ac.uk. 27 February 2004
  17. ^ Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. Review of Terahertz Tomography Techniques. Journal of Infrared, Millimeter, and Terahertz Waves. 2014, 35 (4): 382–411. Bibcode:2014JIMTW..35..382G. CiteSeerX 10.1.1.480.4173 . S2CID 120535020. doi:10.1007/s10762-014-0057-0. 
  18. ^ Daniel M. Mittleman, Stefan Hunsche, Luc Boivin, & Martin C. Nuss. (2001). T-ray tomography. Optics Letters, 22(12)
  19. ^ Katayama, I., Akai, R., Bito, M., Shimosato, H., Miyamoto, K., Ito, H., & Ashida, M. (2010). Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals. Applied Physics Letters, 97(2), 021105. doi: 10.1063/1.3463452
  20. ^ Dolgashev, Valery; Tantawi, Sami; Higashi, Yasuo; Spataro, Bruno. Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures. Applied Physics Letters. 2010-10-25, 97 (17): 171501. doi:10.1063/1.3505339. 
  21. ^ Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X. Terahertz-driven linear electron acceleration. Nature Communications. 2015-10-06, 6 (1): 8486. doi:10.1038/ncomms9486. 
  22. ^ Jing, Chunguang. Dielectric Wakefield Accelerators. Reviews of Accelerator Science and Technology. 2016, 09 (6): 127–149. doi:10.1142/s1793626816300061. 
  23. ^ Poortmans, Jef. IMEC website: Photovoltaic Stacks. [2008-02-17]. (原始内容存档于2007-10-13). 
  24. ^ A new heat engine with no moving parts is as efficient as a steam turbine. MIT News | Massachusetts Institute of Technology. 13 April 2022 [2022-04-13]. (原始内容存档于2023-06-07) (英语). 
  25. ^ Radebaugh, Ray. Cryocoolers: the state of the art and recent developments. Journal of Physics: Condensed Matter. 2009-03-31, 21 (16): 164219. Bibcode:2009JPCM...21p4219R. ISSN 0953-8984. PMID 21825399. S2CID 22695540. doi:10.1088/0953-8984/21/16/164219 (英语). 
  26. ^ Cooper, Bernard E; Hadfield, Robert H. Viewpoint: Compact cryogenics for superconducting photon detectors. Superconductor Science and Technology. 2022-06-28, 35 (8): 080501. Bibcode:2022SuScT..35h0501C. ISSN 0953-2048. S2CID 249534834. doi:10.1088/1361-6668/ac76e9 (英语). 
  27. ^ Non-Parabolic Model for the Solution of 2-D Quantum Transverse States Applied to Narrow Conduction Channel Simulation. Springer. 2006 [2023-08-04]. (原始内容存档于2023-08-04). 
  28. ^ Zawadzki, Wlodzimierz; Lax, Benjamin. Two-Band Model for Bloch Electrons in Crossed Electric and Magnetic Fields. Physical Review Letters. 1966, 16: 1001 [2023-08-04]. doi:10.1103/PhysRevLett.16.1001. (原始内容存档于2023-08-04). 
  29. ^ Tang, Shuang; Mildred, Dresselhaus. Phase diagrams of BiSb thin films with different growth orientations. Physical Review B. 2012, 86 (7): 075436 [2023-08-04]. doi:10.1103/PhysRevB.86.075436. (原始内容存档于2023-06-19). 
  30. ^ Tang, Shuang; Mildred, Dresselhaus. Electronic phases, band gaps, and band overlaps of bismuth antimony nanowires. Physical Review B. 2014, 89 (4): 045424 [2023-08-04]. doi:10.1103/PhysRevB.89.045424. (原始内容存档于2023-06-19). 
  31. ^ Heremans, Joseph. Electronic Properties of Nano-Structured Bismuth-Antimony Materials. Physical Review Letters. 2002, 88: 216801 [2023-08-04]. doi:10.1103/PhysRevLett.88.216801. (原始内容存档于2023-08-04). 
  32. ^ Joesph Heremans. Thermoelectrics Born Again. 2018-04-09 [2023-08-04]. (原始内容存档于2023-08-04). 
  33. ^ Nelson, James T. Chicago Section: 1. Electrical and optical properties of MgPSn and Mg2Si. American Journal of Physics (American Association of Physics Teachers (AAPT)). 1955, 23 (6): 390–390. ISSN 0002-9505. doi:10.1119/1.1934018. 
  • 多恩豪斯,R.,尼姆茨,G.,施利希特,B.(1983)。窄带隙半导体。施普林格现代物理学小册子98 ,ISBN 978-3-540-12091-9 (打印)ISBN 978-3-540-39531-7 (在线)