自我相關函數

統計學名詞

自我相關(英語:Autocorrelation),也叫序列相關[1],是一個訊號於其自身在不同時間點的互相關。非正式地來說,它就是兩次觀察之間的相似度對它們之間的時間差的函數。它是找出重複模式(如被噪聲掩蓋的週期訊號),或識別隱含在訊號諧波頻率中消失的基頻的數學工具。它常用於訊號處理中,用來分析函數或一系列值,如時域訊號。

摺積互相關和自我相關的圖示比較。運算涉及函數,並假定的高度是1.0,在5個不同點上的值,用在每個點下面的陰影面積來指示。
上面:100個隨機數序列的圖,其中隱含了一個正弦函數。下面:自我相關函數產生的相關圖英語correlogram顯示出的正弦函數。

定義

自我相關函數在不同的領域的定義不完全等價。在某些領域,自我相關函數等同於自共變異數

統計學

將一個有序的隨機變數序列與其自身相比較,這就是自我相關函數在統計學中的定義。每個不存在相位差的序列,都與其自身相似,即在此情況下,自我相關函數值最大。如果序列中的組成部分相互之間存在相關性(不再是隨機的),則由以下相關值方程式所計算的值不再為零,這樣的組成部分為自我相關。

 
  ......... 期望值。
  ........ 在t(i)時的隨機變數值。
  ........ 在t(i)時的預期值。
  .... 在t(i+k)時的隨機變數值。
  .... 在t(i+k)時的預期值。
  ......... 為變異數。

所得的自我相關值R的取值範圍為[-1,1],1為最大正相關值,-1則為最大負相關值,0為不相關。

訊號處理

訊號處理中,上面的定義通常不進行歸一化,即不減去均值並除以變異數。當自我相關函數由均值和變異數歸一化時,有時會被稱作自我相關係數[2]

給定一個訊號  ,連續自我相關函數   通常定義為   與其自身延遲   的連續互相關。

 

其中   表示共軛複數  是對函數   操作的一個函數,定義為    表示摺積

對於實值函數英語real function 

注意積分中的參數   是一個虛變量,並且只對計算積分有用。沒有具體含義。

離散訊號   的延遲為   的離散自我相關  

 

上述定義在訊號平方可積或平方可和(即有限能量)的前提下才成立。但「永遠持續」的訊號被處理成隨機過程,就需要使用基於期望值的與之不同的定義。對於寬平穩隨機過程,自我相關函數定義為

 
 

對於非平穩過程,這些也會是   或者   的函數。

對於還是可遍歷英語Ergodic process的過程, 期望值會被換成時間平均的極限。各態歷經過程的自我相關函數有時定義為或等於[2]

 
 

這些定義的優點是,它們合理定義了週期函數的單變量結果,甚至當那些函數不是平穩各態歷經過程時。

此外,「永遠持續」的訊號可以通過短時距自我相關函數使用有限時間積分來處理(相關過程參見短時距傅立葉變換。)

自我相關定義類似。例如,在三維中, 平方可和的離散訊號的自我相關就會是

 

若在求自我相關函數之前從訊號中減去均值,得出的函數通常稱為自共變異數函數。

自我相關函數的性質

以下以一維自我相關函數為例說明其性質,多維的情況可方便地從一維情況推廣得到。

  • 對稱性:從定義顯然可以看出R(i) = R(−i)。連續型自我相關函數為偶函數
當f為實函數時,有:
 
當f是複函數時,該自我相關函數是厄米函數,滿足:
 
其中星號表示共軛
  • 連續型實自我相關函數的峰值在原點取得,即對於任何延時 τ,均有  。該結論可直接有柯西-施瓦茨不等式得到。離散型自我相關函數亦有此結論。
  • 週期函數的自我相關函數是具有與原函數相同週期的函數。
  • 兩個相互無關的函數(即對於所有 τ,兩函數的互相關均為0)之和的自我相關函數等於各自自我相關函數之和。
  • 由於自我相關函數是一種特殊的互相關函數,所以它具有後者的所有性質。
  • 連續時間白噪聲訊號的自我相關函數是一個δ函數,在除 τ = 0 之外的所有點均為0。
 
 
  • 實值、對稱的自我相關函數具有實對稱的轉換函數,因此此時維納-辛欽定理中的複指數項可以寫成如下的餘弦形式:
 
 

自我相關函數舉例

白噪聲的自我相關函數為δ函數:

 

應用

  • 訊號處理中,自我相關可以提供關於重複事件的資訊,例如音樂節拍(例如,確定節奏)或脈波星的頻率(雖然它不能告訴我們節拍的位置)。另外,它也可以用來估計樂音的音高。

參考文獻

  1. ^ Zovko, Ilija I. Topics in Market Microstructure. Amsterdam University Press. 2008-09-01. ISBN 9789056295387 (英語). 
  2. ^ 2.0 2.1 Dunn, Patrick F. Measurement and Data Analysis for Engineering and Science. New York: McGraw–Hill. 2005. ISBN 0-07-282538-3.