File:Lua Gamma Function in Chinese Wiki.svg
此SVG文件的PNG预览的大小:539 × 482像素。 其他分辨率:268 × 240像素 | 537 × 480像素 | 859 × 768像素 | 1,145 × 1,024像素 | 2,290 × 2,048像素。
原始文件 (SVG文件,尺寸为539 × 482像素,文件大小:10 KB)
摘要
描述Lua Gamma Function in Chinese Wiki.svg |
中文(臺灣):w:zh:Module:Complex Number/Functions中Gamma Function的定義方式
|
日期 | |
来源 | 自己的作品 |
作者 | A2569875 |
许可协议
我,本作品著作权人,特此采用以下许可协议发表本作品:
本文件采用知识共享署名-相同方式共享 4.0 国际许可协议授权。
- 您可以自由地:
- 共享 – 复制、发行并传播本作品
- 修改 – 改编作品
- 惟须遵守下列条件:
- 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
- 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。
code
local Reciprocal_gamma_coeff = {1,0.577215664901532860607,-0.655878071520253881077,-0.0420026350340952355290,0.166538611382291489502,-0.0421977345555443367482,-0.00962197152787697356211,0.00721894324666309954240,-0.00116516759185906511211,-0.000215241674114950972816,0.000128050282388116186153,-0.0000201348547807882386557,-1.25049348214267065735e-6,1.13302723198169588237e-6,-2.05633841697760710345e-7,6.11609510448141581786e-9,5.00200764446922293006e-9,-1.18127457048702014459e-9,1.04342671169110051049e-10,7.78226343990507125405e-12,-3.69680561864220570819e-12,5.10037028745447597902e-13,-2.05832605356650678322e-14,-5.34812253942301798237e-15,1.22677862823826079016e-15,-1.18125930169745876951e-16,1.18669225475160033258e-18,1.41238065531803178156e-18,-2.29874568443537020659e-19,1.71440632192733743338e-20}
--https://oeis.org/A001163 、 https://oeis.org/A001164
local stirling_series_coeff = {1,0.0833333333333333333333333,0.00347222222222222222222222,-0.00268132716049382716049383,-0.000229472093621399176954733,0.000784039221720066627474035,0.0000697281375836585777429399,-0.000592166437353693882864836,-0.0000517179090826059219337058,0.000839498720672087279993358,0.0000720489541602001055908572,-0.00191443849856547752650090,-0.000162516262783915816898635,0.00640336283380806979482364,0.000540164767892604515180468,-0.0295278809456991205054407,-0.00248174360026499773091566,0.179540117061234856107699,0.0150561130400264244123842,-1.39180109326533748139915,-0.116546276599463200850734}
function p._gamma_high_imag(cal_z)
local z = to_number(cal_z)
if z ~= nil and math_lib.abs(math_lib.nonRealPart(z)) > 1 then
local inv_z = math_lib.inverse(z)
return math_lib.sqrt((math_lib.pi * 2) * inv_z) * math_lib.pow(z * math_lib.exp(-1) *
math_lib.sqrt( (z * math_lib.sinh(inv_z) ) + math_lib.inverse(to_number(810) * z * z * z * z * z * z) ),z)
end
return nil
end
function p._gamma_morethen_lua_int(cal_z)
local z = to_number(cal_z) - to_number(1)
local lua_int_term = 18.1169 --FindRoot[ Factorial[ x ] == 2 ^ 53, {x, 20} ]
if math_lib.abs(z) > (lua_int_term - 1) or (math_lib.re(z) < 0 and math_lib.abs(math_lib.nonRealPart(z)) > 1 ) then
local sum = 1
for i = 1, #stirling_series_coeff - 1 do
local a, n = to_number(z), tonumber(i) local y, k, f = to_number(1), n, to_number(a)
while k ~= 0 do
if k % 2 == 1 then y = y * f end
k = math.floor(k / 2); f = f * f
end
sum = sum + stirling_series_coeff[i + 1] * math_lib.inverse(y)
end
return math_lib.sqrt( (2 * math.pi) * z ) * math_lib.pow( z * math.exp(-1), z ) * sum
end
return nil
end
function p._gamma_abs_less1(cal_z)
local z = to_number(cal_z)
if math_lib.abs(z) <=1.001 then
if math_lib.abs(math_lib.nonRealPart(z)) < 1e-14 and ( (math.abs(math_lib.re(z) - 1) < 1e-14) or (math.abs(math_lib.re(z) - 2) < 1e-14) ) then return to_number(1)end
return math_lib.inverse(p._recigamma_abs_less1(z))
end
return nil
end
function p._recigamma_abs_less1(z)
local result = to_number(0)
for i=1,#Reciprocal_gamma_coeff do
result = result + Reciprocal_gamma_coeff[i] * math_lib.pow(z,i)
end
return result
end
function p._gamma(cal_z)
local z = to_number(cal_z)
if math_lib.abs(math_lib.nonRealPart(z)) < 1e-14 and ((math_lib.re(z) < 0 or math.abs(math_lib.re(z)) < 1e-14)
and math.abs(math.floor(math_lib.re(z)) - math_lib.re(z)) < 1e-14 ) then return tonumber("nan") end
local pre_result = p._gamma_morethen_lua_int(z) or p._gamma_high_imag(z) or p._gamma_abs_less1(z)
if pre_result then return pre_result end
local real_check = math_lib.re(z)
local loop_count = math.floor(real_check)
local start_number, zero_flag = z - loop_count, false
if math_lib.abs(start_number) <= 1e-14 then start_number = to_number(1);zero_flag = true end
local result = math_lib.inverse(p._recigamma_abs_less1(start_number))
if math_lib.abs(math_lib.nonRealPart(z)) < 1e-14 and ((math_lib.re(z) > 1e-14 )and math.abs(math.floor(math_lib.re(z)) - math_lib.re(z)) < 1e-14 ) then result = to_number(1) end
local j = to_number(start_number)
for i=1,math.abs(loop_count) do
if loop_count > 0 then result = result * j else result = result * math_lib.inverse(j-1) end
if zero_flag==true and loop_count > 0 then zero_flag=false else if loop_count > 0 then j = j + 1 else j = j - 1 end end
end
if math_lib.abs(math_lib.nonRealPart(z)) < 1e-14 and ((math_lib.re(z) > 1e-14 )and math.abs(math.floor(math_lib.re(z)) - math_lib.re(z)) < 1e-14 ) then return math_lib.floor(result) end
return result
end
Reference
- ↑ Wrench, J.W. (1968). Concerning two series for the gamma function. Mathematics of Computation, 22, 617–626. and
Wrench, J.W. (1973). Erratum: Concerning two series for the gamma function. Mathematics of Computation, 27, 681–682. - ↑ Viktor T. Toth (2006). "Programmable Calculators: Calculators and the Gamma Function". Archived from the original on 2007-02-23.
- ↑ NIST Digital Library of Mathematical Functions.
此文件中描述的项目
描绘内容
知识共享署名-相同方式共享4.0国际 简体中文(已转写)
18 11 2018
媒体类型 简体中文(已转写)
image/svg+xml
文件历史
点击某个日期/时间查看对应时刻的文件。
日期/时间 | 缩略图 | 大小 | 用户 | 备注 | |
---|---|---|---|---|---|
当前 | 2018年11月18日 (日) 17:51 | 539 × 482(10 KB) | A2569875 | User created page with UploadWizard |
文件用途
以下3个页面使用本文件:
元数据
此文件中包含有扩展的信息。这些信息可能是由数码相机或扫描仪在创建或数字化过程中所添加。
如果此文件的源文件已经被修改,一些信息在修改后的文件中将不能完全反映出来。
宽度 | 538.58px |
---|---|
高度 | 481.89px |