星际分子列表

已在星際物質和星周包層中被檢測出的分子列表

星际分子列表列出已在星际物质星周包层中被检测出的分子,并依照组成原子的数目分组。每一种分子均附其化学式,若有离子型式也会一并列出。

HH 46/47英语HH 46/47 的红外光谱(插图中的图像),其中几个分子的振动带用颜色标记。

发现

本列表中的所有分子都是透过分光学检测出来的。这些分子的光谱特征是由不同能级之间组成电子的跃迁,或是通过旋转、振动光谱产生的,多数会在光谱的无线电波微波红外线部分被侦测出来[1]

星际分子是由非常稀疏的星际或星周云内的尘埃和气体经化学反应而形成的,大部分时候于分子与宇宙射线相互作用、被电离时发生。射线中带正电的质点会以静电力吸引邻近的中性粒子。反应也可以在中性的原子和分子之间发生,但进行的比较缓慢[2]。尘埃在使分子免受恒星发出的紫外线辐射的电离效应上具有关键作用[3]

历史

生命的化学反应可能开始于距今约138亿年前大霹雳不久之后、宇宙进入一段适居时期时,当时宇宙的年龄约只有1亿至1.7亿年[4][5]

星际物质中检测到的第一个含分子是甲炔(CH),于1937年首次被检测出来[6]。之后的20世纪70年代早期的一些证据显示,宇宙尘埃是由数量众多的复杂有机分子(COMs,可能是聚合物)所组成的[7]。天体物理学家钱德拉·维克拉玛辛赫英语Chandra Wickramasinghe甲醛分子为基础提出聚合化合物存在于星际空间中的可能[8];维克拉玛辛赫并与弗雷德·霍伊尔据2175 Å的紫外线消光吸收分析鉴定出了双环芳香族化合物的存在,从而证明了星际空间中存在着多环芳香烃分子[9]

2004年,科学家在自红矩形星云发射的紫外线中检测出了光谱特征英语Spectral signature,此等复杂的分子之前从未在外太空中被发现[10]。学界多认为此一发现证实了当与红矩形星云相同类型的星云接近生命尽头时,星云核心中的碳和氢将因对流作用被束缚在恒星风中并向外辐射的假设[11]:当冷却时,原子会彼此结合,最终形成含有百万颗以上原子的大型分子。科学家们并推断,既然多环芳香烃是在星云中被发现的,那其必然也是产生于星云之中[10][11]

2010年,富勒烯(又称为“巴克球”)在星云中被检测出来[12]。富勒烯与生命起源有着一定的关系;天文学家莱蒂西亚·史坦赫利尼(Letizia Stanghellini)表示:“来自外太空的巴克球有可能为地球上的生命发展提供了种子。”[13]2019年4月,科学家透过哈勃空间望远镜观测星际物质时,在恒星间侦测到了大型、复杂的离子化巴克明斯特富勒烯(C60)分子[14][15]

2011年,科学家们利用光谱学发现,含有复杂有机化合物(“具有芳香族脂肪族混合结构的无定形有机固体”)的宇宙尘埃可自然、快速地由恒星产生[16][17][18]。这些分子的化学结构非常复杂,其复杂程度已可与石油的化学成分相比;之前学界普遍认为具有这种复杂程度的化学物质仅能由生物体产生[16]。观察结果表明,由星际尘埃粒子引入地球的有机化合物基于其表面催化活性可以作为生命的基本要素[19][20]。其中一位科学家并认为这些化合物可能与地球上的生命发展相关,并表示:“如果这一假设为真,则地球上的生命可能会比我们想像的更容易萌芽,因为这些有机物可以作为生命的组成基础。”[16]

2012年8月,哥本哈根大学的天文学家在一个遥远星系中的原恒星周围发现了乙醇醛(一种有机化合物);此恒星的编号为IRAS 16293-2422,距离地球约400光年[21][22]。乙醇醛是组成核糖核酸的必要物质之一,而核糖核酸可在遗传编码转译、调控及基因表现等过程中发挥作用。这一发现表明复杂的有机分子可能在行星形成之前即在恒星系统中产生,并最终到达正在发展的早期行星上[23]

 
紫外线环境下显示出弓形激波狮子座CW

2012年9月,美国国家航空航天局的科学家提出报告,认为多环芳香烃在星际物质环境中会经氢化氧化羟基化等作用形成更复杂的有机化合物,“逐步向形成核苷酸氨基酸(分别为蛋白质去氧核糖核酸)的道路前进”[24][25]。此外,在转变的过程中,多环芳香烃物质将丧失其光谱特征,“或许就是为什么在星际冰英语Interstellar ice(尤其是寒冷、浓密的星云)及原行星盘的上部分子层中很少侦测到多环芳香烃存在的原因之一”[24][25]

多环芳香烃在宇宙中随处可见[26]。2013年6月,多环芳香烃在土星最大的卫星土卫六(俗称“泰坦”)上被侦测出来[27]

2013年8月,里兹大学的德威恩·赫德(Dwayne Heard)认为量子力学中的量子隧穿效应可以解释他的实验小组观察到的现象:冷羟基(温度约63开尔文)和甲醇分子之间突破了分子内的能垒,导致两种物质之间的反应发生率明显高于预期。在不考虑量子效应时,此分子能垒一般需在较高温度的环境中透过热能或电离作用克服。量子隧穿效应有助于解释复杂分子(由数十个以上的原子所组成)于星际空间中的存在[28]

2015年3月,NASA的科学家报告其实验室已成功利用嘧啶(常见于陨石中)等基本化学物质,在外太空模拟环境下生成包括尿嘧啶胞嘧啶胸腺嘧啶在内的DNA和RNA等复杂有机化合物。据科学家的说法,嘧啶的形成过程与多环芳香烃相似,可能是在红巨星、星际尘埃或气体云中生成的[29]

2016年10月,天文学家称甲炔、碳氢正离子(CH+)和碳离子(C+)等生命形成所需的基本要素大部分是自恒星发出的紫外线中产生的,而非像之前料想的与超新星和年轻恒星扰动相关的事件等其他生成途径[30][31]

人马座B2是宇宙中星际分子含量最丰富的区域之一。人马座B2是一个由气体和尘埃组成的分子云,横躺在银河系的中心附近,常成为天文学的研究标的。本列表中大约有一半的分子最初都是在人马座B2内被发现的,而几乎所有已知的星际分子目前也都能在此处检测出来[32]。另一个常作为星际分子调查来源的地点是狮子座CW(即IRC +10216星),有多达50种分子在那里被检测出来[33]

理论模型

要解释观察到的异构体的比例,就必须运用最小能量原理。在大多数情况中,最小能量原理能够解释为何某些分子因为总能量较低的缘故在星际空间的含量较其异构体丰富,不过也有一些例外存在[34]。这些例外有些可以利用其他分子参数解决,例如偶极极化率(dipole polarizabilty)也会影响异构体的丰度:极化率较低的分子在星际空间的含量会比平均极化率较高的分子更丰富[35]。此现象的成因来自于与宇宙中各种辐射原理相似之极化率与外部电场下分子行为的相关性。

另一种解释则完全忽略能量问题,只处理透过信息熵指数(information entropy index)计算的分子复杂性。此解释推测一些分子的组成物质参数值(如尿素嘧啶二羟基丙酮尿嘧啶胞嘧啶甘氨酸丙氨酸等)因落入已知星际分子典型值的范围内,使这些分子在星际环境中被发现的可能性较其他分子要高。此外,信息熵大的分子,即那些结构最复杂的分子,占有星际集合的一半之多,其百分比随着分子大小而递减。此一趋势也有可能与分子化学结构之均匀度和稳定性的不同有关,因为大尺寸的可检测分子更可能拥有对称而非不对称的分子结构。实际观察中检测到的大量低熵、结构高度对称的富勒烯分子为这一假设提供了支持理据。另外,信息熵也反映了物质的氢化深度:信息熵大的分子缺少氢气组成,而其他多数分子皆含有大量的氢[36]

分子列表

下列出已在星际物质星周包层中被检测出的分子,并依照组成原子的数目分组。每一种分子均附其化学式,若有离子型式也会一并列出。若该分子只有离子型式被检测出来,或是没有在科学文献中定名者,则分子一栏留空。下列表格中质量一格数据采用之计量单位原子质量单位。每小节标题会列出该小节所含之分子总数。

目前大部分被侦测出的星际分子都是有机化合物。在所有组成原子数目达五个以上的分子中,只有甲硅烷(SiH4)是无机化合物,其他分子都具有至少一个碳原子,而没有N-N或O-O键[37]

双原子(44)

 
一氧化碳(CO)经常被用来追踪分子云的质量分布[38]
分子 英文名称 中文名称 质量 离子
AlCl Aluminium monochloride[39][40] 一氯化铝 62.5
AlF Aluminium monofluoride[39][41] 一氟化铝 46
AlO Aluminium monoxide[42] 一氧化铝 43
Argonium[43][44] 氩氢离子 41 ArH+
C2 Diatomic carbon[45][46] 双原子碳 24
Fluoromethylidynium 氟化次甲基正离子 31 CF+[47]
CH Methylidyne radical[30][48] 次甲基自由基 13 CH+[49]
CN Cyanogen radical[39][48][50][51] 氰基自由基 26 CN+[52]
CN[53]
CO Carbon monoxide[39][54][55] 一氧化碳 28 CO+[56]
CP Carbon monophosphide[51] 一磷化碳 43
CS Carbon monosulfide[39] 一硫化碳 44
FeO Iron(II) oxide[57] 氧化亚铁 82
Helium hydride ion[58][59] 氦合氢离子 5 HeH+
H2 Molecular hydrogen[60] 分子 2
HCl Hydrogen chloride[61] 氯化氢 36.5 HCl+[62]
HF Hydrogen fluoride[63] 氟化氢 20
HO Hydroxyl radical[39] 羟基自由基 17 OH+[64]
KCl Potassium chloride[39][40] 氯化钾 75.5
NH Imidogen[65][66] 一氢化氮 15
N2 Molecular nitrogen[67][68] 分子 28
NO Nitric oxide[69] 一氧化氮 30 NO+[52]
NS Sulfur mononitride[39] 一氮化硫 46
NaCl Sodium chloride[39][40] 氯化钠 58.5
Magnesium monohydride cation 一氢化镁英语Magnesium monohydride正离子 25.3 MgH+[52]
NaI Sodium iodide[70] 碘化钠 150
O2 Molecular oxygen[71] 分子 32
PN Phosphorus mononitride[72] 一氮化磷 45
PO Phosphorus monoxide[73] 一氧化磷 47
SH Sulfur monohydride[74] 一氢化硫 33 SH+[75]
SO Sulfur monoxide[39] 一氧化硫 48 SO+[49]
SiC Carborundum[39][76] 碳化硅 40
SiN Silicon mononitride[39] 一氮化硅英语Silicon nitride 42
SiO Silicon monoxide[39] 一氧化硅 44
SiS Silicon monosulfide[39] 一硫化硅 60
TiO Titanium(II) oxide[77] 一氧化钛 63.9

三原子(41)

 
三氢正离子H+
3
)是宇宙中含量最丰富的离子之一,于1993年首次被侦测[78][79]
分子 英文名称 中文名称 质量 离子
AlNC Aluminium isocyanide[39] 异氰化铝(I) 53
AlOH Aluminium hydroxide[80] 氢氧化铝(I) 44
C3 Tricarbon[81][82] 三碳英语Tricarbon 36
C2H Ethynyl radical[39][50] 乙炔基 25
CCN Cyanomethylidyne[83] 38
C2O Dicarbon monoxide[84] 一氧化二碳 40
C2S Thioxoethenylidene[85] 一硫化二碳 56
C2P [86] 55
CO2 Carbon dioxide[87] 二氧化碳 44
FeCN Iron cyanide[88] 氰化铁 82
Protonated molecular hydrogen 三氢正离子 3 H+
3
[78][79]
H2C Methylene radical[89] 甲烯 14
Chloronium 氯𬭩离子 37.5 H2Cl+[90]
H2O Water[91] 18 H2O+[92]
HO2 Hydroperoxyl[93] 超氧化氢 33
H2S Hydrogen sulfide[39] 硫化氢 34
HCN Hydrogen cyanide[39][50][94] 氰化氢 27
HNC Hydrogen isocyanide[95][96] 异氢氰酸 27
HCO Formyl radical[97] 甲酰基 29 HCO+[49][97][98]
HCP Phosphaethyne[99] 磷杂乙炔 44
HCS Thioformyl[100] 硫甲酰基 45 HCS+[49][98]
Diazenylium[98][49][101] 二亚胺氮𬭩离子 29 HN+
2
HNO Nitroxyl[102] 次硝酸 31
Isoformyl 29 HOC+[50]
HSC Isothioformyl[100] 45
KCN Potassium cyanide[39] 氰化钾 65
MgCN Magnesium cyanide[39] 氰化镁(I) 50
MgNC Magnesium isocyanide[39] 异氰化镁(I) 50
NH2 Amino radical[103] 氨基自由基 16
N2O Nitrous oxide[104] 一氧化二氮 44
NaCN Sodium cyanide[39] 氰化钠 49
NaOH Sodium hydroxide[105] 氢氧化钠 40
OCS Carbonyl sulfide[106] 羰基硫 60
O3 Ozone[107] 臭氧 48
SO2 Sulfur dioxide[39][108] 二氧化硫 64
c-SiC2 c-Silicon dicarbide[39][76] c-二碳化硅英语Silicon carbide 52
SiCSi Disilicon carbide[109] 68
SiCN Silicon carbonitride[110] 碳氮化硅 54
SiNC [111] 54
TiO2 Titanium dioxide[77] 二氧化钛 79.9

四原子(28)

 
甲醛(H2CO)是一种广泛分布于星际介质中的有机分子[112]
分子 英文名称 中文名称 质量 离子
CH3 Methyl radical[113] 甲基 15
l-C3H Propynylidyne[39][114] 37 l-C3H+[115]
c-C3H Cyclopropynylidyne[116] 环丙炔基 37
C3N Cyanoethynyl[117] 氰乙基英语Polyyne 50 C3N[118]
C3O Tricarbon monoxide[114] 一氧化三碳 52
C3S Tricarbon sulfide[39][85] 一硫化三碳 68
Hydronium 水合氢离子 19 H3O+[119]
C2H2 Acetylene[120] 乙炔 26
H2CN Methylene amidogen[121] 28 H2CN+[49]
H2CO Formaldehyde[112] 甲醛 30
H2CS Thioformaldehyde[122] 硫代甲醛 46
HCCN [123] 39
HCCO Ketenyl[124] 乙烯酮 41
Protonated hydrogen cyanide 质子化的氰化氢 28 HCNH+[98]
Protonated carbon dioxide 质子化的二氧化碳 45 HOCO+[125]
HCNO Fulminic acid[126] 雷酸 43
HOCN Cyanic acid[127] 氰酸 43
CNCN Isocyanogen[128] 异氰 52
HOOH Hydrogen peroxide[129] 过氧化氢 34
HNCO Isocyanic acid[108] 异氰酸 43
HNCS Isothiocyanic acid[130] 异硫氰酸 59
NH3 Ammonia[39][131] 17
HSCN Thiocyanic acid[132] 硫氰酸 59
SiC3 Silicon tricarbide[39]  三碳化硅 64
HMgNC Hydromagnesium isocyanide[133]  异氰化氢镁 51.3
HNO2 Nitrous acid[134] 亚硝酸 47

五原子(20)

 
甲烷(CH4)是天然气的主要组成成分,曾于彗星及数个太阳系行星的大气层中被检测到[135]
分子 英文名称 中文名称 质量 离子
Ammonium ion[136][137] 离子 18 NH+
4
CH4 Methane[138] 甲烷 16
CH3O Methoxy radical[139] 甲氧基 31
c-C3H2 Cyclopropenylidene[50][140][141] 环丙烯亚基[142](又译为亚环丙烯基自由基) 38
l-H2C3 Propadienylidene[141] 丙二烯 38
H2CCN Cyanomethyl[143] 氰甲基英语Cyanomethyl自由基 40
H2C2O Ketene[108] 乙烯酮 42
H2CNH Methylenimine[144] 甲亚胺 29
HNCNH Carbodiimide[145] 碳二亚胺 42
Protonated formaldehyde 质子化的甲醛 31 H2COH+[146]
C4H Butadiynyl[39] 丁二炔 49 C4H[147]
HC3N Cyanoacetylene[39][50][98][148][149] 氰基乙炔 51
HCC-NC Isocyanoacetylene[150] 异氰基乙炔 51
HCOOH Formic acid[151][148] 甲酸 46
NH2CN Cyanamide[152] 氨基氰 42
Protonated cyanogen 质子化的氰 53 NCCNH+[153]
HC(O)CN Cyanoformaldehyde[154] 甲酰腈 55
C5 Linear C5[155] 五碳 60
SiC4 Silicon-carbide cluster[76] 碳化硅簇合物 92
SiH4 Silane[156] 硅烷 32

六原子(16)

 
在星际物质中,甲酰胺(HCONH2,上图)可与亚甲基结合形成乙酰胺[157]
分子 英文名称 中文名称 质量 离子
c-H2C3O Cyclopropenone[158] 环丙烯酮 54
E-HNCHCN E-Cyanomethanimine[159] 54
C2H4 Ethylene[160] 乙烯 28
CH3CN Acetonitrile[108][161][162] 乙腈 40
CH3NC Methyl isocyanide[161] 甲基异氰 40
CH3OH Methanol[108][163] 甲醇 32
CH3SH Methanethiol[164] 甲基硫醇 48
l-H2C4 Diacetylene[39][165] 丁二炔 50
Protonated cyanoacetylene 质子化的氰基乙炔 52 HC3NH+[98]
HCONH2 Formamide[157] 甲酰胺 44
C5H Pentynylidyne[39][85] 亚戊基 61
C5N Cyanobutadiynyl radical[166] 氰基丁二烯基 74
HC2CHO Propynal[167] 丙炔醛 54
HC4N [39]  63
CH2CNH Ketenimine[140] 氮丙环 40
C5S [168] 92

七原子(11)

 
乙醛(CH3CHO,上图)及其异构体乙烯醇环氧乙烷等分子皆曾在星际空间中被侦测到[169]
分子 英文名称 中文名称 质量 离子
c-C2H4O Ethylene oxide[170] 环氧乙烷 44
CH3C2H Methylacetylene[50] 丙炔 40
H3CNH2 Methylamine[171] 甲胺 31
CH2CHCN Acrylonitrile[108][161] 丙烯腈 53
H2CHCOH Vinyl alcohol[169] 乙烯醇 44
C6H Hexatriynyl radical[39][85] 己三炔自由基英语Hexatriynyl radical 73 C6H[141][172]
HC4CN Cyanodiacetylene[108][149][161] 氰基丁二炔 75
HC5O [173] 77
CH3CHO Acetaldehyde[39][170] 乙醛 44
CH3NCO Methyl isocyanate[174] 异氰酸甲酯 57
HOCH2CN Glycolonitrile[175] 羟基乙腈 57

八原子(11)

 
乙酸(CH3COOH,中常见的化合物)之电波讯号已于1997年被证实为真[176]
分子 英文名称 中文名称 质量 离子
H3CC2CN Methylcyanoacetylene[177] 甲基氰基乙炔 65
H2COHCHO Glycolaldehyde[178] 乙醇醛 60
HCOOCH3 Methyl formate[108][148][178] 甲酸甲酯 60
CH3COOH Acetic acid[176] 乙酸 60
H2C6 Hexapentaenylidene[39][165] 己五烯 74
CH2CHCHO Propenal[140] 丙烯醛 56
CH2CCHCN Cyanoallene[140][177] 氰基丙二烯 65
CH3CHNH Ethanimine[179] 亚氨基乙烷 43
C7H Heptatrienyl radical[180] 庚三烯基自由基 85
NH2CH2CN Aminoacetonitrile[181] 氨基乙腈 56
(NH2)2CO Urea[182] 尿素 60

九原子(10)

 
乙醇(CH3CH2OH)是常见的燃料、溶剂和消毒剂,也常用于有机合成
分子 英文名称 中文名称 质量 离子
CH3C4H Methyldiacetylene[183] 甲基丁二炔 64
CH3OCH3 Dimethyl Ether[184] 二甲醚 46
CH3CH2CN Propionitrile[39][108][161] 丙腈 55
CH3CONH2 Acetamide[140][157] 乙酰胺 59
CH3CH2OH Ethanol[185] 乙醇 46
C8H Octatetraynyl radical[186] 辛四炔英语4-Octyne自由基 97 C8H[187][188]
HC7N Cyanohexatriyne
Cyanotriacetylene[39][131][189][190]
氰基己三炔 99
CH3CHCH2 Propylene
Propene[191]
丙烯 42
CH3CH2SH Ethyl mercaptan[192] 乙硫醇 62

超过九个原子(17)

一些聚炔烃衍生化学物质名列星际介质中发现的最重的分子之一
原子数量 分子 英文名称 中文名称 质量 离子
10 (CH3)2CO Acetone[108][193] 丙酮 58
10 (CH2OH)2 Ethylene glycol[194][195] 乙二醇 62
10 CH3CH2CHO Propanal[140] 丙醛 58
10 CH3OCH2OH Methoxymethanol[196] 甲氧基甲醇 62
10 CH3C5N Methylcyanodiacetylene[140] 甲基氰基丁二炔 89
10 CH3CHCH2O Propylene oxide[197] 环氧丙烷 58
11 HC8CN Cyanotetraacetylene[39][189] 氰基多炔烃 123
11 C2H5OCHO Ethyl formate[198] 甲酸乙酯 74
11 CH3COOCH3 Methyl acetate[199] 乙酸甲酯 74
11 CH3C6H Methyltriacetylene[140][183] 甲基己三炔 88
12 C6H6 Benzene[165] 78
12 C3H7CN n-Propyl cyanide[198] 正丁腈 69
12 (CH3)2CHCN iso-Propyl cyanide[200][201] 异丁腈 69
13 C
6
H
5
CN
Benzonitrile[202] 苯甲腈 104
13 HC10CN Cyanopentaacetylene[189] 氰基癸五炔 147
60 C60 Buckminsterfullerene
C60 fullerene[203]
富勒烯 720 C+
60
[14][15][204][205]
70 C70 C70 fullerene[203] C70富勒烯英语C70 fullerene 840

含氘原子的分子(20)

以下分子皆含有(D/2
H
),氢的一种稳定形态同位素

原子数量 分子 英文名称 中文名称
2 HD Hydrogen deuteride[206][207] 氘化氢
3 H2D+
HD+
2
Trihydrogen cation[206][207] 三氢正离子
3 HDO
D2O
Heavy water[208][209] 重水
3 DCN Hydrogen cyanide[210] 氰化氢
3 DCO Formyl radical[210] 甲酰基
3 DNC Hydrogen isocyanide[210] 异氢氰酸
3 N2D+ [210] 
4 NH2D
NHD2
ND3
Ammonia[207][211][212]
4 HDCO
D2CO
Formaldehyde[207][213] 甲醛
4 DNCO Isocyanic acid[214] 异氰酸
5 NH3D+ Ammonium ion[215][216] 铵离子
6 NH
2
CDO

NHDCHO
Formamide[214] 甲酰胺
7 CH2DCCH
CH3CCD
Methylacetylene[217][218] 丙炔

未经证实的分子(12)

以下分子存在于星际空间中的证据曾在科学文献中被提及,然而这些证据不是被文献作者描述为“暂定性的”,就是曾被其他学者所挑战。这些分子存在于星际空间中的证据仍待更多独立研究证实。

原子数量 分子 英文名称 中文名称
2 SiH Silylidine[95]
4 PH3 Phosphine[219] 磷化氢
4 MgCCH Magnesium monoacetylide[168] 乙炔酸镁
4 NCCP Cyanophosphaethyne[168] 氰基磷杂乙炔
5 H2NCO+ [220]
6 SiH3CN Silyl cyanide[168] 氰基甲基硅烷
10 H2NCH2COOH Glycine[221][222] 甘氨酸
12 CO(CH2OH)2 Dihydroxyacetone[223] 二羟基丙酮
12 C2H5OCH3 Ethyl methyl ether[224] 甲乙醚
18 C
10
H+
8
Naphthalene cation[225] 正离子
24 C24 Graphene[226] 石墨烯
24 C14H10 Anthracene[10][227]
26 C16H10 Pyrene[10]

参见

参考资料

  1. ^ Shu, Frank H. The Physical Universe: An Introduction to Astronomy. University Science Books. 1982. ISBN 978-0-935702-05-7 (英语). 
  2. ^ Dalgarno, A. Interstellar Chemistry Special Feature: The galactic cosmic ray ionization rate. Proceedings of the National Academy of Sciences. 2006, 103 (33): 12269–12273. Bibcode:2006PNAS..10312269D. PMC 1567869 . PMID 16894166. doi:10.1073/pnas.0602117103 (英语). 
  3. ^ Brown, Laurie M.; Pais, Abraham; Pippard, A. B. The physics of the interstellar medium. Twentieth Century Physics 2nd. CRC Press英语CRC Press. 1995: 1765. ISBN 978-0-7503-0310-1 (英语). 
  4. ^ Loeb, Abraham. The Habitable Epoch of the Early Universe. International Journal of Astrobiology英语International Journal of Astrobiology. 2014-10, 13 (4): 337–339. Bibcode:2014IJAsB..13..337L. arXiv:1312.0613 . doi:10.1017/S1473550414000196 (英语). 
  5. ^ Dreifus, Claudia. Much-Discussed Views That Go Way Back - Avi Loeb Ponders the Early Universe, Nature and Life. New York Times. 2014-12-02 [2014-12-03]. (原始内容存档于2014-12-03) (英语). 
  6. ^ Woon, D. E. Methylidyne radical. The Astrochemist. 2005-05 [2007-02-13]. (原始内容存档于2007-03-19) (英语). 
  7. ^ Ruaud, M.; Loison, J.C.; Hickson, K.M.; Gratier, P.; Hersant, F.; Wakelam, V. Modeling Complex Organic Molecules in dense regions: Eley-Rideal and complex induced reaction. Monthly Notices of the Royal Astronomical Society. 2015, 447 (4): 4004–4017. Bibcode:2015MNRAS.447.4004R. arXiv:1412.6256 . doi:10.1093/mnras/stu2709 (英语). 
  8. ^ Wickramasinghe, N.C. Formaldehyde Polymers in Interstellar Space. Nature. 1974-12-06, 252: 462–463 [2019-08-27]. doi:10.1038/252462a0. (原始内容存档于2019-04-30) (英语). 
  9. ^ Hoyle, F.; Wickramasinghe, N.C. Identification of the lambda 2200Å interstellar absorption feature. Nature. 1977-11, 270 (5635): 323–324 [2019-08-27]. doi:10.1038/270323a0. (原始内容存档于2021-07-02) (英语). 
  10. ^ 10.0 10.1 10.2 10.3 Battersby, S. Space molecules point to organic origins. New Scientist. 2004 [2009-12-11]. (原始内容存档于2009-01-11) (英语). 
  11. ^ 11.0 11.1 Mulas, G.; Malloci, G.; Joblin, C.; Toublanc, D. Estimated IR and phosphorescence emission fluxes for specific polycyclic aromatic hydrocarbons in the Red Rectangle. Astronomy and Astrophysics. 2006, 446 (2): 537–549. Bibcode:2006A&A...446..537M. arXiv:astro-ph/0509586 . doi:10.1051/0004-6361:20053738 (英语). 
  12. ^ García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R. A.; Szczerba, R.; Perea-Calderón, J. V. Formation Of Fullerenes In H-Containing Planetary Nebulae. The Astrophysical Journal Letters. 2010-10-28, 724 (1): L39–L43. Bibcode:2010ApJ...724L..39G. arXiv:1009.4357 . doi:10.1088/2041-8205/724/1/L39 (英语). 
  13. ^ Atkinson, Nancy. Buckyballs Could Be Plentiful in the Universe. Universe Today. 2010-10-27 [2010-10-28]. (原始内容存档于2010-10-29) (英语). 
  14. ^ 14.0 14.1 Starr, Michelle. The Hubble Space Telescope Has Just Found Solid Evidence of Interstellar Buckyballs. ScienceAlert.com. 2019-04-29 [2019-04-29]. (原始内容存档于2019-04-29) (英语). 
  15. ^ 15.0 15.1 Cordiner, M.A.; et al. Confirming Interstellar C60 + Using the Hubble Space Telescope. The Astrophysical Journal Letters. 2019-04-22, 875 (2): L28. doi:10.3847/2041-8213/ab14e5 (英语). 
  16. ^ 16.0 16.1 16.2 Chow, Denise. Discovery: Cosmic Dust Contains Organic Matter from Stars. Space.com英语Space.com. 2011-10-26 [2011-10-26]. (原始内容存档于2015-07-14) (英语). 
  17. ^ ScienceDaily Staff. Astronomers Discover Complex Organic Matter Exists Throughout the Universe. ScienceDaily英语ScienceDaily. 2011-10-26 [2011-10-27]. (原始内容存档于2015-07-03) (英语). 
  18. ^ Kwok, Sun; Zhang, Yong. Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature. 2011-10-26, 479 (7371): 80–3. Bibcode:2011Natur.479...80K. PMID 22031328. doi:10.1038/nature10542 (英语). 
  19. ^ Gallori, Enzo. Astrochemistry and the origin of genetic material. Rendiconti Lincei意大利语Rendiconti Lincei. 2010-11, 22 (2): 113–118. doi:10.1007/s12210-011-0118-4 (英语). 
  20. ^ Martins, Zita. Organic Chemistry of Carbonaceous Meteorites. Elements英语Elements (journal). 2011-02, 7 (1): 35–40 [2011-08-11]. doi:10.2113/gselements.7.1.35. (原始内容存档于2011-10-06) (英语). 
  21. ^ Than, Ker. Sugar Found In Space. National Geographic. 2012-08-29 [2012-08-31]. (原始内容存档于2015-07-14) (英语). 
  22. ^ Staff. Sweet! Astronomers spot sugar molecule near star. AP News. 2012-08-29 [2012-08-31]. (原始内容存档于2015-07-14) (英语). 
  23. ^ Jørgensen, J. K.; Favre, C.; Bisschop, S.; Bourke, T.; Dishoeck, E.; Schmalzl, M. Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA (PDF). The Astrophysical Journal Letters. eprint. 2012, 757 (1): L4 [2019-08-27]. Bibcode:2012ApJ...757L...4J. arXiv:1208.5498 . doi:10.1088/2041-8205/757/1/L4. (原始内容存档 (PDF)于2015-09-24) (英语). 
  24. ^ 24.0 24.1 Staff. NASA Cooks Up Icy Organics to Mimic Life's Origins. Space.com. 2012-09-20 [2012-09-22]. (原始内容存档于2015-06-25) (英语). 
  25. ^ 25.0 25.1 Gudipati, Murthy S.; Yang, Rui. In-Situ Probing Of Radiation-Induced Processing Of Organics In Astrophysical Ice Analogs—Novel Laser Desorption Laser Ionization Time-Of-Flight Mass Spectroscopic Studies. The Astrophysical Journal Letters. 2012-09-01, 756 (1): L24 [2012-09-22]. Bibcode:2012ApJ...756L..24G. doi:10.1088/2041-8205/756/1/L24. (原始内容存档于2019-09-12) (英语). 
  26. ^ Clavin, Whitney. Why Comets Are Like Deep Fried Ice Cream. NASA. 2015-02-10 [2015-02-10]. (原始内容存档于2015-02-11) (英语). 
  27. ^ López-Puertas, Manuel. PAH's in Titan's Upper Atmosphere. CSIC. 2013-06-06 [2013-06-06]. (原始内容存档于2013-12-03) (英语). 
  28. ^ Interstellar chemistry makes use of quantum shortcut. Science News英语Science News. 2013-07-08 [2019-08-27]. (原始内容存档于2019-04-02) (英语).  
  29. ^ Marlaire, Ruth. NASA Ames Reproduces the Building Blocks of Life in Laboratory. NASA. 2015-03-03 [2015-03-05]. (原始内容存档于2015-03-05) (英语). 
  30. ^ 30.0 30.1 Landau, Elizabeth. Building Blocks of Life's Building Blocks Come From Starlight. NASA. 2016-10-12 [2016-10-13]. (原始内容存档于2016-10-13) (英语). 
  31. ^ Morris, Patrick W.; Gupta, Harshal; Nagy, Zsofia; Pearson, John C.; Ossenkopf-Okada, Volker; Falgarone, Edith; Lis, Dariusz C.; Gerin, Maryvonne; Melnick, Gary; Neufeld, David A.; Bergin, Edwin A. Herschel/HIFI Spectral Mapping of C+, CH+, and CH in Orion BN/Kl: The Prevailing Role of Ultraviolet Irradiation in CH+ Formation. The Astrophysical Journal. 2016, 829 (1): 15. Bibcode:2016ApJ...829...15M. arXiv:1604.05805 . doi:10.3847/0004-637X/829/1/15 (英语). 
  32. ^ Cummins, S. E.; Linke, R. A.; Thaddeus, P. A survey of the millimeter-wave spectrum of Sagittarius B2. The Astrophysical Journal Supplement Series. 1986, 60: 819–878. Bibcode:1986ApJS...60..819C. doi:10.1086/191102 (英语). 
  33. ^ Kaler, James B. The hundred greatest stars. Copernicus Series. Springer. 2002 [2011-05-09]. ISBN 978-0-387-95436-3 (英语). 
  34. ^ Lattelais, M.; Pauzat, F.; Ellinger, Y.; Ceccarelli, C. Interstellar Complex Organic Molecules and the Minimum Energy Principle. The Astrophysical Journal Letters. 2009, 696 (2): L133–L136. Bibcode:2009ApJ...696L.133L. doi:10.1088/0004-637X/696/2/L133. 
  35. ^ Sabirov, D.; Garipova, R.; Cataldo, F. Polarizability of isomeric and related interstellar compounds in the aspect of their abundance. Molecular Astrophysics. 2018, 12 (1): 10–19. doi:10.1016/j.molap.2018.05.001 (英语). 
  36. ^ Sabirov, Denis. Information entropy of interstellar and circumstellar carbon-containing molecules: Molecular size against structural complexity. Computational and Theoretical Chemistry英语Computational and Theoretical Chemistry. 2016-12-01, 1097 (1): 83–91. doi:10.1016/j.comptc.2016.10.014 (英语). 
  37. ^ Klemperer, William. Astronomical Chemistry. Annual Review of Physical Chemistry英语Annual Review of Physical Chemistry. 2011, 62: 173–184. Bibcode:2011ARPC...62..173K. PMID 21128763. doi:10.1146/annurev-physchem-032210-103332 (英语). 
  38. ^ The Structure of Molecular Cloud Cores. Centre for Astrophysics and Planetary Science, University of Kent. [2007-02-16]. (原始内容存档于2012-06-29) (英语). 
  39. ^ 39.00 39.01 39.02 39.03 39.04 39.05 39.06 39.07 39.08 39.09 39.10 39.11 39.12 39.13 39.14 39.15 39.16 39.17 39.18 39.19 39.20 39.21 39.22 39.23 39.24 39.25 39.26 39.27 39.28 39.29 39.30 39.31 39.32 39.33 39.34 39.35 39.36 39.37 39.38 Ziurys, Lucy M. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life. Proceedings of the National Academy of Sciences. 2006, 103 (33): 12274–12279. Bibcode:2006PNAS..10312274Z. PMC 1567870 . PMID 16894164. doi:10.1073/pnas.0602277103 (英语). 
  40. ^ 40.0 40.1 40.2 Cernicharo, J.; Guelin, M. Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF. Astronomy and Astrophysics. 1987, 183 (1): L10–L12. Bibcode:1987A&A...183L..10C (英语). 
  41. ^ Ziurys, L. M.; Apponi, A. J.; Phillips, T. G. Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF. The Astrophysical Journal. 1994, 433 (2): 729–732. Bibcode:1994ApJ...433..729Z. doi:10.1086/174682 (英语). 
  42. ^ Tenenbaum, E. D.; Ziurys, L. M. Millimeter Detection of AlO (X2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris. The Astrophysical Journal. 2009, 694 (1): L59–L63. Bibcode:2009ApJ...694L..59T. doi:10.1088/0004-637X/694/1/L59 (英语). 
  43. ^ Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T. Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula. Science. 2013, 342 (6164): 1343–1345. Bibcode:2013Sci...342.1343B. PMID 24337290. arXiv:1312.4843 . doi:10.1126/science.1243582 (英语). 
  44. ^ Quenqua, Douglas. Noble Molecules Found in Space. New York Times. 2013-12-13 [2019-08-24]. (原始内容存档于2019-04-02) (英语). 
  45. ^ Souza, S. P; Lutz, B. L. Detection of C2 in the interstellar spectrum of Cygnus OB2 number 12 /VI Cygni number 12/. The Astrophysical Journal. 1977, 216: L49. Bibcode:1977ApJ...216L..49S. doi:10.1086/182507 (英语). 
  46. ^ Lambert, D. L.; Sheffer, Y.; Federman, S. R. Hubble Space Telescope observations of C2 molecules in diffuse interstellar clouds. The Astrophysical Journal. 1995, 438: 740–749. Bibcode:1995ApJ...438..740L. doi:10.1086/175119 (英语). 
  47. ^ Neufeld, D. A.; et al. Discovery of interstellar CF+. Astronomy and Astrophysics. 2006, 454 (2): L37–L40. Bibcode:2006A&A...454L..37N. arXiv:astro-ph/0603201 . doi:10.1051/0004-6361:200600015 (英语). 
  48. ^ 48.0 48.1 Adams, Walter S. Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory. The Astrophysical Journal. 1941, 93: 11–23. Bibcode:1941ApJ....93...11A. doi:10.1086/144237 (英语). 
  49. ^ 49.0 49.1 49.2 49.3 49.4 49.5 Smith, D. Formation and Destruction of Molecular Ions in Interstellar Clouds. Philosophical Transactions of the Royal Society of London. 1988, 324 (1578): 257–273. Bibcode:1988RSPTA.324..257S. doi:10.1098/rsta.1988.0016 (英语). 
  50. ^ 50.0 50.1 50.2 50.3 50.4 50.5 50.6 Fuente, A.; et al. Photon-dominated Chemistry in the Nucleus of M82: Widespread HOC+ Emission in the Inner 650 Parsec Disk. The Astrophysical Journal. 2005, 619 (2): L155–L158. Bibcode:2005ApJ...619L.155F. arXiv:astro-ph/0412361 . doi:10.1086/427990 (英语). 
  51. ^ 51.0 51.1 Guelin, M.; Cernicharo, J.; Paubert, G.; Turner, B. E. Free CP in IRC + 10216. Astronomy and Astrophysics. 1990, 230: L9–L11. Bibcode:1990A&A...230L...9G (英语). 
  52. ^ 52.0 52.1 52.2 Dopita, Michael A.; Sutherland, Ralph S. Astrophysics of the diffuse universe. Springer. 2003. ISBN 978-3-540-43362-0 (英语). 
  53. ^ Agúndez, M.; et al. Astronomical identification of CN, the smallest observed molecular anion. Astronomy and Astrophysics. 2010-07-30, 517: L2 [2010-09-03]. Bibcode:2010A&A...517L...2A. arXiv:1007.0662 . doi:10.1051/0004-6361/201015186. (原始内容存档于2012-04-06) (英语). 
  54. ^ Khan, Amina. Did two planets around nearby star collide? Toxic gas holds hints. LA Times. [2014-03-09]. (原始内容存档于2014-03-10) (英语). 
  55. ^ Dent, W.R.F.; Wyatt, M.C.;Roberge, A.; Augereau, J.-C.; Casassus, S.;Corder, S.; Greaves, J.S.; de Gregorio-Monsalvo, I; Hales, A.; Jackson, A.P.; Hughes, A. Meredith; Lagrange, A.-M; Matthews, B.; Wilner, D. Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk. Science. 2014-03-06, 343 (6178): 1490–1492. Bibcode:2014Sci...343.1490D. PMID 24603151. arXiv:1404.1380 . doi:10.1126/science.1248726 (英语). 
  56. ^ Latter, W. B.; Walker, C. K.; Maloney, P. R. Detection of the Carbon Monoxide Ion (CO+) in the Interstellar Medium and a Planetary Nebula. The Astrophysical Journal Letters. 1993, 419: L97. Bibcode:1993ApJ...419L..97L. doi:10.1086/187146 (英语). 
  57. ^ Furuya, R. S.; et al. Interferometric observations of FeO towards Sagittarius B2. Astronomy and Astrophysics. 2003, 409 (2): L21–L24. Bibcode:2003A&A...409L..21F. doi:10.1051/0004-6361:20031304 (英语). 
  58. ^ Fisher, Christine. NASA finally found evidence of the universe's earliest molecule - The elusive helium hydride was found 3,000 light-years away.. Engadget. 2019-04-17 [2019-08-24]. (原始内容存档于2019-06-05) (英语). 
  59. ^ Güsten, Rolf; et al. Astrophysical detection of the helium hydride ion HeH+. Nature. 2019-04-17, 568 (7752): 357-359. doi:10.1038/s41586-019-1090-x (英语). 
  60. ^ Adams, Walter S. Rocket Observation of Interstellar Molecular Hydrogen. The Astrophysical Journal. 1970, 161: L81–L85. Bibcode:1970ApJ...161L..81C. doi:10.1086/180575 (英语). 
  61. ^ Blake, G. A.; Keene, J.; Phillips, T. G. Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1. The Astrophysical Journal, Part 1. 1985, 295: 501–506. Bibcode:1985ApJ...295..501B. doi:10.1086/163394 (英语). 
  62. ^ De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C.; et al. Herschel/HIFI Discovery of HCl+ in the Interstellar Medium. The Astrophysical Journal Letters. 2012, 751 (2): L37. Bibcode:2012ApJ...751L..37D. doi:10.1088/2041-8205/751/2/L37 (英语). 
  63. ^ Neufeld, David A.; et al. Discovery of Interstellar Hydrogen Fluoride. The Astrophysical Journal Letters. 1997, 488 (2): L141–L144. Bibcode:1997ApJ...488L.141N. arXiv:astro-ph/9708013 . doi:10.1086/310942 (英语). 
  64. ^ Wyrowski, F.; et al. First interstellar detection of OH+. Astronomy and Astrophysics. 2009, 518: A26. Bibcode:2010A&A...518A..26W. arXiv:1004.2627 . doi:10.1051/0004-6361/201014364 (英语). 
  65. ^ Meyer, D. M.; Roth, K. C. Discovery of interstellar NH. The Astrophysical Journal Letters. 1991, 376: L49–L52. Bibcode:1991ApJ...376L..49M. doi:10.1086/186100 (英语). 
  66. ^ Wagenblast, R.; et al. On the origin of NH in diffuse interstellar clouds. Monthly Notices of the Royal Astronomical Society. 1993-01, 260 (2): 420–424. Bibcode:1993MNRAS.260..420W. doi:10.1093/mnras/260.2.420 (英语). 
  67. ^ <Please add first missing authors to populate metadata.>. Astronomers Detect Molecular Nitrogen Outside Solar System. Space Daily. 2004-06-09 [2010-06-25]. (原始内容存档于2008-12-10) (英语). 
  68. ^ Knauth, D. C; et al. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations. Nature. 2004, 429 (6992): 636–638. Bibcode:2004Natur.429..636K. PMID 15190346. doi:10.1038/nature02614 (英语). 
  69. ^ McGonagle, D.; et al. Detection of nitric oxide in the dark cloud L134N. The Astrophysical Journal, Part 1. 1990, 359: 121–124. Bibcode:1990ApJ...359..121M. doi:10.1086/169040 (英语). 
  70. ^ Whiteoak, J. B.; Gardner, F. F. Interstellar NaI absorption towards the stellar association ARA OB1. Astronomical Society of Australia英语Astronomical Society of Australia, Proceedings. 1985, 6 (2): 164–171. Bibcode:1985PASAu...6..164W. doi:10.1017/S1323358000018002 (英语). 
  71. ^ Staff writers. Elusive oxygen molecule finally discovered in interstellar space. Physorg.com. 2007-03-27 [2007-04-02]. (原始内容存档于2007-07-04) (英语). 
  72. ^ Ziurys, L. M. Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds. The Astrophysical Journal Letters. 1987, 321: L81–L85. Bibcode:1987ApJ...321L..81Z. doi:10.1086/185010 (英语). 
  73. ^ Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. Identification of phosphorus monoxide (X 2 Pi r) in VY Canis Majoris: Detection of the first PO bond in space. The Astrophysical Journal Letters. 2007, 666 (1): L29–L32. Bibcode:2007ApJ...666L..29T. doi:10.1086/521361 (英语). 
  74. ^ Yamamura, S. T.; Kawaguchi, K.; Ridgway, S. T. Identification of SH v=1 Ro-vibrational Lines in R Andromedae. The Astrophysical Journal. 2000, 528 (1): L33–L36. Bibcode:2000ApJ...528L..33Y. PMID 10587489. arXiv:astro-ph/9911080 . doi:10.1086/312420 (英语). 
  75. ^ Menten, K. M.; et al. Submillimeter Absorption from SH+, a New Widespread Interstellar Radical, 13CH+ and HCl. Astronomy and Astrophysics. 2011, 525: A77 [2010-12-03]. Bibcode:2011A&A...525A..77M. arXiv:1009.2825 . doi:10.1051/0004-6361/201014363. (原始内容存档于2011-07-19) (英语). 
  76. ^ 76.0 76.1 76.2 Pascoli, G.; Comeau, M. Silicon Carbide in Circumstellar Environment. Astrophysics and Space Science英语Astrophysics and Space Science. 1995, 226 (1): 149–163. Bibcode:1995Ap&SS.226..149P. doi:10.1007/BF00626907 (英语). 
  77. ^ 77.0 77.1 Kamiński, T.; et al. Pure rotational spectra of TiO and TiO2 in VY Canis Majoris. Astronomy and Astrophysics. 2013, 551: A113. Bibcode:2013A&A...551A.113K. arXiv:1301.4344 . doi:10.1051/0004-6361/201220290 (英语). 
  78. ^ 78.0 78.1 Oka, Takeshi. Interstellar H3+. Proceedings of the National Academy of Sciences. 2006, 103 (33): 12235–12242. Bibcode:2006PNAS..10312235O. PMC 1567864 . PMID 16894171. doi:10.1073/pnas.0601242103 (英语). 
  79. ^ 79.0 79.1 Geballe, T. R.; Oka, T. Detection of H3+ in Interstellar Space. Nature. 1996, 384 (6607): 334–335. Bibcode:1996Natur.384..334G. PMID 8934516. doi:10.1038/384334a0 (英语). 
  80. ^ Tenenbaum, E. D.; Ziurys, L. M. Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris. The Astrophysical Journal. 2010, 712 (1): L93–L97. Bibcode:2010ApJ...712L..93T. doi:10.1088/2041-8205/712/1/L93 (英语). 
  81. ^ Hinkle, K. W; Keady, J. J; Bernath, P. F. Detection of C3 in the Circumstellar Shell of IRC+10216. Science. 1988, 241 (4871): 1319 [2019-08-27]. Bibcode:1988Sci...241.1319H. PMID 17828935. doi:10.1126/science.241.4871.1319. (原始内容存档于2021-12-01) (英语). 
  82. ^ Maier, John P; Lakin, Nicholas M; Walker, Gordon A. H; Bohlender, David A. Detection of C3 in Diffuse Interstellar Clouds. The Astrophysical Journal. 2001, 553 (1): 267–273. Bibcode:2001ApJ...553..267M. arXiv:astro-ph/0102449 . doi:10.1086/320668 (英语). 
  83. ^ Anderson, J. K.; et al. Detection of CCN (X2Πr) in IRC+10216: Constraining Carbon-chain Chemistry. The Astrophysical Journal. 2014, 795 (1): L1. Bibcode:2014ApJ...795L...1A. doi:10.1088/2041-8205/795/1/L1 (英语). 
  84. ^ Ohishi, Masatoshi, Masatoshi; et al. Detection of a new carbon-chain molecule, CCO. The Astrophysical Journal Letters. 1991, 380: L39–L42. Bibcode:1991ApJ...380L..39O. doi:10.1086/186168 (英语). 
  85. ^ 85.0 85.1 85.2 85.3 Irvine, William M.; et al. Newly detected molecules in dense interstellar clouds. Astrophysical Letters and Communications. 1988, 26: 167–180. Bibcode:1988ApL&C..26..167I. PMID 11538461 (英语). 
  86. ^ Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M. Detection of the CCP Radical (X 2Πr) in IRC +10216: A New Interstellar Phosphorus-containing Species. The Astrophysical Journal. 2008, 677 (2): L101–L104. Bibcode:2008ApJ...677L.101H. doi:10.1086/588024 (英语). 
  87. ^ Whittet, Douglas C. B.; Walker, H. J. On the occurrence of carbon dioxide in interstellar grain mantles and ion-molecule chemistry. Monthly Notices of the Royal Astronomical Society. 1991, 252: 63–67. Bibcode:1991MNRAS.252...63W. doi:10.1093/mnras/252.1.63 (英语). 
  88. ^ Zack, L. N.; Halfen, D. T.; Ziurys, L. M. Detection of FeCN (X 4Δi) in IRC+10216: A New Interstellar Molecule. The Astrophysical Journal Letters. 2011-06, 733 (2): L36. Bibcode:2011ApJ...733L..36Z. doi:10.1088/2041-8205/733/2/L36 (英语). 
  89. ^ Hollis, J. M.; Jewell, P. R.; Lovas, F. J. Confirmation of interstellar methylene. The Astrophysical Journal, Part 1. 1995, 438: 259–264. Bibcode:1995ApJ...438..259H. doi:10.1086/175070 (英语). 
  90. ^ Lis, D. C.; et al. Herschel/HIFI discovery of interstellar chloronium (H2Cl+). Astronomy and Astrophysics. 2010-10-01, 521: L9. Bibcode:2010A&A...521L...9L. arXiv:1007.1461 . doi:10.1051/0004-6361/201014959 (英语). 
  91. ^ Europe's space telescope ISO finds water in distant places. XMM-Newton Press Release. 1997-04-29: 12 [2007-02-08]. Bibcode:1997xmm..pres...12.. (原始内容存档于2006-12-22) (英语). 
  92. ^ Ossenkopf, V.; et al. Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334. Astronomy and Astrophysics. 2010, 518: L111. Bibcode:2010A&A...518L.111O. arXiv:1005.2521 . doi:10.1051/0004-6361/201014577 (英语). 
  93. ^ Parise, B.; Bergman, P.; Du, F. Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network. Astronomy and Astrophysics Letters. 2012, 541: L11–L14. Bibcode:2012A&A...541L..11P. arXiv:1205.0361 . doi:10.1051/0004-6361/201219379 (英语). 
  94. ^ Snyder, L. E.; Buhl, D. Observations of Radio Emission from Interstellar Hydrogen Cyanide. The Astrophysical Journal. 1971, 163: L47–L52. Bibcode:1971ApJ...163L..47S. doi:10.1086/180664 (英语). 
  95. ^ 95.0 95.1 Schilke, P.; Benford, D. J.; Hunter, T. R.; Lis, D. C., Phillips, T. G.; Phillips, T. G. A Line Survey of Orion-KL from 607 to 725 GHz. The Astrophysical Journal Supplement Series. 2001, 132 (2): 281–364. Bibcode:2001ApJS..132..281S. doi:10.1086/318951 (英语). 
  96. ^ Schilke, P.; Comito, C.; Thorwirth, S. First Detection of Vibrationally Excited HNC in Space. The Astrophysical Journal. 2003, 582 (2): L101–L104. Bibcode:2003ApJ...582L.101S. doi:10.1086/367628 (英语). 
  97. ^ 97.0 97.1 Schenewerk, M. S.; Snyder, L. E.; Hjalmarson, A. Interstellar HCO - Detection of the missing 3 millimeter quartet. The Astrophysical Journal Letters. 1986, 303: L71–L74. Bibcode:1986ApJ...303L..71S. doi:10.1086/184655 (英语). 
  98. ^ 98.0 98.1 98.2 98.3 98.4 98.5 Kawaguchi, Kentarou; et al. Detection of a new molecular ion HC3NH(+) in TMC-1. The Astrophysical Journal. 1994, 420: L95. Bibcode:1994ApJ...420L..95K. doi:10.1086/187171 (英语). 
  99. ^ Agúndez, M.; Cernicharo, J.; Guélin, M. Discovery of Phosphaethyne (HCP) in Space: Phosphorus Chemistry in Circumstellar Envelopes. The Astrophysical Journal. 2007, 662 (2): L91. Bibcode:2007ApJ...662L..91A. doi:10.1086/519561 (英语). 
  100. ^ 100.0 100.1 Agúndez, M; Marcelino, N; Cernicharo, J; Tafalla, M. Detection of interstellar HCS and its metastable isomer HSC: New pieces in the puzzle of sulfur chemistry. Astronomy and Astrophysics. 2018, 611: L1. Bibcode:2018A&A...611L...1A. arXiv:1802.09401 . doi:10.1051/0004-6361/201832743 (英语). 
  101. ^ Womack, M.; Ziurys, L. M.; Wyckoff, S. A survey of N2H(+) in dense clouds - Implications for interstellar nitrogen and ion-molecule chemistry. The Astrophysical Journal, Part 1. 1992, 387: 417–429. Bibcode:1992ApJ...387..417W. doi:10.1086/171094 (英语). 
  102. ^ Hollis, J. M.; et al. Interstellar HNO: Confirming the Identification - Atoms, ions and molecules: New results in spectral line astrophysics. Atoms. 1991, 16: 407–412. Bibcode:1991ASPC...16..407H (英语). 
  103. ^ van Dishoeck, Ewine F.; et al. Detection of the Interstellar NH 2 Radical. The Astrophysical Journal Letters. 1993, 416: L83–L86. Bibcode:1993ApJ...416L..83V. doi:10.1086/187076. hdl:1887/2194 (英语). 
  104. ^ Ziurys, L. M.; et al. Detection of interstellar N2O: A new molecule containing an N-O bond. The Astrophysical Journal Letters. 1994, 436: L181–L184. Bibcode:1994ApJ...436L.181Z. doi:10.1086/187662 (英语). 
  105. ^ Hollis, J. M.; Rhodes, P. J. Detection of interstellar sodium hydroxide in self-absorption toward the galactic center. The Astrophysical Journal Letters. 1982-11-01, 262: L1–L5. Bibcode:1982ApJ...262L...1H. doi:10.1086/183900 (英语). 
  106. ^ Goldsmith, P. F.; Linke, R. A. A study of interstellar carbonyl sulfide. The Astrophysical Journal, Part 1. 1981, 245: 482–494. Bibcode:1981ApJ...245..482G. doi:10.1086/158824 (英语). 
  107. ^ Phillips, T. G.; Knapp, G. R. Interstellar Ozone. 美国天文学会通告. 1980, 12: 440. Bibcode:1980BAAS...12..440P (英语). 
  108. ^ 108.00 108.01 108.02 108.03 108.04 108.05 108.06 108.07 108.08 108.09 Johansson, L. E. B.; et al. Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz. Astronomy and Astrophysics. 1984, 130 (2): 227–256. Bibcode:1984A&A...130..227J (英语). 
  109. ^ Cernicharo, José; et al. Discovery of SiCSi in IRC+10216: a Missing Link Between Gas and Dust Carriers OF Si–C Bonds. The Astrophysical Journal Letters. 2015, 806 (1): L3 [2019-08-27]. Bibcode:2015ApJ...806L...3C. PMID 26722621. arXiv:1505.01633 . doi:10.1088/2041-8205/806/1/L3. (原始内容存档于2020-06-18) (英语). 
  110. ^ Guélin, M.; et al. Astronomical detection of the free radical SiCN. Astronomy and Astrophysics. 2004, 363: L9–L12. Bibcode:2000A&A...363L...9G (英语). 
  111. ^ Guélin, M.; et al. Detection of the SiNC radical in IRC+10216. Astronomy and Astrophysics. 2004, 426 (2): L49–L52. Bibcode:2004A&A...426L..49G. doi:10.1051/0004-6361:200400074 (英语). 
  112. ^ 112.0 112.1 Snyder, Lewis E.; et al. Microwave Detection of Interstellar Formaldehyde. Physical Review Letters英语Physical Review Letters. 1999, 61 (2): 77–115. Bibcode:1969PhRvL..22..679S. doi:10.1103/PhysRevLett.22.679 (英语). 
  113. ^ Feuchtgruber, H.; et al. Detection of Interstellar CH3. The Astrophysical Journal. June 2000, 535 (2): L111–L114. Bibcode:2000ApJ...535L.111F. PMID 10835311. arXiv:astro-ph/0005273 . doi:10.1086/312711 (英语). 
  114. ^ 114.0 114.1 Irvine, W. M.; et al. Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O. Bulletin of the American Astronomical Society. 1984, 16: 877. Bibcode:1984BAAS...16..877I (英语). 
  115. ^ Pety, J.; et al. The IRAM-30 m line survey of the Horsehead PDR. II. First detection of the l-C3MH+ hydrocarbon cation. Astronomy and Astrophysics. 2012, 548: A68. Bibcode:2012A&A...548A..68P. arXiv:1210.8178 . doi:10.1051/0004-6361/201220062 (英语). 
  116. ^ Mangum, J. G.; Wootten, A. Observations of the cyclic C3H radical in the interstellar medium. Astronomy and Astrophysics. 1990, 239: 319–325. Bibcode:1990A&A...239..319M (英语). 
  117. ^ Bell, M. B.; Matthews, H. E. Detection of C3N in the spiral arm gas clouds in the direction of Cassiopeia A. The Astrophysical Journal, Part 1. 1995, 438: 223–225. Bibcode:1995ApJ...438..223B. doi:10.1086/175066 (英语). 
  118. ^ Thaddeus, P.; et al. Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-. The Astrophysical Journal. 2008, 677 (2): 1132–1139. Bibcode:2008ApJ...677.1132T. doi:10.1086/528947 (英语). 
  119. ^ Wootten, Alwyn; et al. Detection of interstellar H3O(+) - A confirming line. The Astrophysical Journal Letters. 1991, 380: L79–L83. Bibcode:1991ApJ...380L..79W. doi:10.1086/186178 (英语). 
  120. ^ Ridgway, S. T.; et al. Circumstellar acetylene in the infrared spectrum of IRC+10216. Nature. 1976, 264 (5584): 345, 346. Bibcode:1976Natur.264..345R. doi:10.1038/264345a0 (英语). 
  121. ^ Ohishi, Masatoshi; et al. Detection of a new interstellar molecule, H2CN. The Astrophysical Journal Letters. 1994, 427: L51–L54. Bibcode:1994ApJ...427L..51O. doi:10.1086/187362 (英语). 
  122. ^ Minh, Y. C.; Irvine, W. M.; Brewer, M. K. H2CS abundances and ortho-to-para ratios in interstellar clouds. Astronomy and Astrophysics. 1991, 244: 181–189. Bibcode:1991A&A...244..181M. PMID 11538284 (英语). 
  123. ^ Guelin, M.; Cernicharo, J. Astronomical detection of the HCCN radical - Toward a new family of carbon-chain molecules?. Astronomy and Astrophysics. 1991, 244: L21–L24. Bibcode:1991A&A...244L..21G (英语). 
  124. ^ Agúndez, M.; et al. Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical. Astronomy and Astrophysics. 2015, 577: L5. Bibcode:2015A&A...577L...5A. PMC 4693959 . PMID 26722130. arXiv:1504.05721 . doi:10.1051/0004-6361/201526317 (英语). 
  125. ^ Minh, Y. C.; Irvine, W. M.; Ziurys, L. M. Observations of interstellar HOCO(+) - Abundance enhancements toward the Galactic center. The Astrophysical Journal, Part 1. 1988, 334: 175–181. Bibcode:1988ApJ...334..175M. doi:10.1086/166827 (英语). 
  126. ^ Marcelino, Núria; et al. Discovery of fulminic acid, HCNO, in dark clouds. The Astrophysical Journal. 2009, 690 (1): L27–L30. Bibcode:2009ApJ...690L..27M. arXiv:0811.2679 . doi:10.1088/0004-637X/690/1/L27 (英语). 
  127. ^ Brünken, S.; et al. Interstellar HOCN in the Galactic center region. Astronomy and Astrophysics. 2010-07-22, 516: A109. Bibcode:2010A&A...516A.109B. arXiv:1005.2489 . doi:10.1051/0004-6361/200912456 (英语). 
  128. ^ Agúndez, M; Marcelino, N; Cernicharo, J. Discovery of Interstellar Isocyanogen (CNCN): Further Evidence that Dicyanopolyynes Are Abundant in Space. The Astrophysical Journal. 2018, 861 (2): L22. Bibcode:2018ApJ...861L..22A. PMC 6120679 . PMID 30186588. arXiv:1806.10328 . doi:10.3847/2041-8213/aad089 (英语). 
  129. ^ Bergman; Parise; Liseau; Larsson; Olofsson; Menten; Güsten. Detection of interstellar hydrogen peroxide. Astronomy and Astrophysics. 2011, 531: L8. Bibcode:2011A&A...531L...8B. arXiv:1105.5799 . doi:10.1051/0004-6361/201117170 (英语). 
  130. ^ Frerking, M. A.; Linke, R. A.; Thaddeus, P. Interstellar isothiocyanic acid. The Astrophysical Journal Letters. 1979, 234: L143–L145. Bibcode:1979ApJ...234L.143F. doi:10.1086/183126 (英语). 
  131. ^ 131.0 131.1 Nguyen-Q-Rieu; Graham, D.; Bujarrabal, V. Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216. Astronomy and Astrophysics. 1984, 138 (1): L5–L8. Bibcode:1984A&A...138L...5N (英语). 
  132. ^ Halfen, D. T.; et al. Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN. The Astrophysical Journal Letters. 2009-09, 702 (2): L124–L127. Bibcode:2009ApJ...702L.124H. doi:10.1088/0004-637X/702/2/L124 (英语). 
  133. ^ Cabezas, C.; et al. Laboratory and Astronomical Discovery of Hydromagnesium Isocyanide. The Astrophysical Journal. 2013, 775 (2): 133. Bibcode:2013ApJ...775..133C. arXiv:1309.0371 . doi:10.1088/0004-637X/775/2/133 (英语). 
  134. ^ Coutens, A.; Ligterink, N. F. W.; Loison, J.-C.; Wakelam, V.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Müller, H. S. P.; Van Dishoeck, E. F.; Wampfler, S. F. The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium. Astronomy and Astrophysics. 2019, 623: L13. Bibcode:2019A&A...623L..13C. arXiv:1903.03378 . doi:10.1051/0004-6361/201935040 (英语). 
  135. ^ Butterworth, Anna L.; et al. Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites. Monthly Notices of the Royal Astronomical Society. 2004, 347 (3): 807–812. Bibcode:2004MNRAS.347..807B. doi:10.1111/j.1365-2966.2004.07251.x (英语). 
  136. ^ Müller, H. S. P. NH4+ in the ISM. Universität zu Köln. 2013-06 [2019-08-24]. (原始内容存档于2019-08-24) (英语). 
  137. ^ Cernicharo, J.; Tercero, B.; Fuente, A.; Domenech, J. L.; Cueto, M.; Carrasco, E.; Herrero, V. J.; Tanarro, I.; Marcelino, N. DETECTION OF THE AMMONIUM ION IN SPACE. The Astrophysical Journal. 2013-06-18, 771 (1): L10. ISSN 2041-8205. doi:10.1088/2041-8205/771/1/L10 (英语). 
  138. ^ Lacy, J. H.; et al. Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds. The Astrophysical Journal. 1991, 376: 556–560. Bibcode:1991ApJ...376..556L. doi:10.1086/170304 (英语). 
  139. ^ Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M. Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds. The Astrophysical Journal Letters. 2012, 759 (2): L43–L46. Bibcode:2012ApJ...759L..43C. doi:10.1088/2041-8205/759/2/L43 (英语). 
  140. ^ 140.0 140.1 140.2 140.3 140.4 140.5 140.6 140.7 Finley, Dave. Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life. NRAO Press Release. 2006-08-07: 9 [2006-08-10]. Bibcode:2006nrao.pres....9.. (原始内容存档于2006-08-19) (英语). 
  141. ^ 141.0 141.1 141.2 Fossé, David; et al. Molecular Carbon Chains and Rings in TMC-1. The Astrophysical Journal. 2001, 552 (1): 168–174. Bibcode:2001ApJ...552..168F. arXiv:astro-ph/0012405 . doi:10.1086/320471 (英语). 
  142. ^ 土卫六大气层发现独特环状碳氢分子. 科技日报. 美国趣味科学网站. 2020-11-03 [2020-11-12]. (原始内容存档于2020-11-12) (中文). 
  143. ^ Irvine, W. M.; et al. Identification of the interstellar cyanomethyl radical (CH2CN) in the molecular clouds TMC-1 and Sagittarius B2. The Astrophysical Journal Letters. 1988, 334: L107–L111. Bibcode:1988ApJ...334L.107I. doi:10.1086/185323 (英语). 
  144. ^ Dickens, J. E.; et al. Hydrogenation of Interstellar Molecules: A Survey for Methylenimine (CH2NH). The Astrophysical Journal. 1997, 479 (1 Pt 1): 307–12. Bibcode:1997ApJ...479..307D. PMID 11541227. doi:10.1086/303884 (英语). 
  145. ^ McGuire, B.A.; et al. Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features. The Astrophysical Journal Letters. 2012, 758 (2): L33–L38. Bibcode:2012ApJ...758L..33M. arXiv:1209.1590 . doi:10.1088/2041-8205/758/2/L33 (英语). 
  146. ^ Ohishi, Masatoshi; et al. Detection of a New Interstellar Molecular Ion, H2COH+ (Protonated Formaldehyde). The Astrophysical Journal. 1996, 471 (1): L61–4. Bibcode:1996ApJ...471L..61O. PMID 11541244. doi:10.1086/310325 (英语). 
  147. ^ Cernicharo, J.; et al. Astronomical detection of C4H, the second interstellar anion. Astronomy and Astrophysics. 2007, 61 (2): L37–L40. Bibcode:2007A&A...467L..37C. doi:10.1051/0004-6361:20077415 (英语). 
  148. ^ 148.0 148.1 148.2 Liu, S.-Y.; Mehringer, D. M.; Snyder, L. E. Observations of Formic Acid in Hot Molecular Cores. The Astrophysical Journal. 2001, 552 (2): 654–663. Bibcode:2001ApJ...552..654L. doi:10.1086/320563 (英语). 
  149. ^ 149.0 149.1 Walmsley, C. M.; Winnewisser, G.; Toelle, F. Cyanoacetylene and cyanodiacetylene in interstellar clouds. Astronomy and Astrophysics. 1990, 81 (1–2): 245–250. Bibcode:1980A&A....81..245W (英语). 
  150. ^ Kawaguchi, Kentarou; et al. Detection of isocyanoacetylene HCCNC in TMC-1. The Astrophysical Journal. 1992, 386 (2): L51–L53. Bibcode:1992ApJ...386L..51K. doi:10.1086/186290 (英语). 
  151. ^ Zuckerman, B.; Ball, John A.; Gottlieb, Carl A. Microwave Detection of Interstellar Formic Acid. The Astrophysical Journal. 1971, 163: L41. Bibcode:1971ApJ...163L..41Z. doi:10.1086/180663 (英语). 
  152. ^ Turner, B. E.; et al. Microwave detection of interstellar cyanamide. The Astrophysical Journal. 1975, 201: L149–L152. Bibcode:1975ApJ...201L.149T. doi:10.1086/181963 (英语). 
  153. ^ Agúndez, M.; et al. Probing non-polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+). Astronomy and Astrophysics. 2015, 579: L10. Bibcode:2015A&A...579L..10A. PMC 4630856 . PMID 26543239. arXiv:1506.07043 . doi:10.1051/0004-6361/201526650 (英语). 
  154. ^ Remijan, Anthony J.; et al. Detection of interstellar cyanoformaldehyde (CNCHO). The Astrophysical Journal. 2008, 675 (2): L85–L88. Bibcode:2008ApJ...675L..85R. doi:10.1086/533529 (英语). 
  155. ^ Bernath, P. F; Hinkle, K. H; Keady, J. J. Detection of C5 in the Circumstellar Shell of IRC+10216. Science. 1989, 244 (4904): 562 [2019-08-27]. Bibcode:1989Sci...244..562B. PMID 17769400. doi:10.1126/science.244.4904.562. (原始内容存档于2021-12-01) (英语). 
  156. ^ Goldhaber, D. M.; Betz, A. L. Silane in IRC +10216. The Astrophysical Journal Letters. 1984, 279: –L55–L58. Bibcode:1984ApJ...279L..55G. doi:10.1086/184255 (英语). 
  157. ^ 157.0 157.1 157.2 Hollis, J. M.; et al. Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond. The Astrophysical Journal. 2006, 643 (1): L25–L28 [2019-08-27]. Bibcode:2006ApJ...643L..25H. doi:10.1086/505110. (原始内容存档于2021-11-09) (英语). 
  158. ^ Hollis, J. M.; et al. Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule. The Astrophysical Journal. 2006, 642 (2): 933–939. Bibcode:2006ApJ...642..933H. doi:10.1086/501121 (英语). 
  159. ^ Zaleski, D. P.; et al. Detection of E-Cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey. The Astrophysical Journal Letters. 2013, 765 (1): L109. Bibcode:2013ApJ...765L..10Z. arXiv:1302.0909 . doi:10.1088/2041-8205/765/1/L10 (英语). 
  160. ^ Betz, A. L. Ethylene in IRC +10216. The Astrophysical Journal Letters. 1981, 244: –L105. Bibcode:1981ApJ...244L.103B. doi:10.1086/183490 (英语). 
  161. ^ 161.0 161.1 161.2 161.3 161.4 Remijan, Anthony J.; et al. Interstellar Isomers: The Importance of Bonding Energy Differences. The Astrophysical Journal. 2005, 632 (1): 333–339. Bibcode:2005ApJ...632..333R. arXiv:astro-ph/0506502 . doi:10.1086/432908 (英语). 
  162. ^ Complex Organic Molecules Discovered in Infant Star System. NRAO (Astrobiology Web). 2015-04-08 [2015-04-09]. (原始内容存档于2015-04-09) (英语). 
  163. ^ First Detection of Methyl Alcohol in a Planet-forming Disc. Astrobiology Web. 2016-06-15 [2019-08-24]. (原始内容存档于2023-03-06) (英语). 
  164. ^ Lambert, D. L.; Sheffer, Y.; Federman, S. R. Interstellar methyl mercaptan. The Astrophysical Journal Letters. 1979, 234: L139–L142. Bibcode:1979ApJ...234L.139L. doi:10.1086/183125 (英语). 
  165. ^ 165.0 165.1 165.2 Cernicharo, José; et al. Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618. The Astrophysical Journal Letters. 1997, 546 (2): L123–L126. Bibcode:2001ApJ...546L.123C. doi:10.1086/318871 (英语). 
  166. ^ Guelin, M.; Neininger, N.; Cernicharo, J. Astronomical detection of the cyanobutadiynyl radical C_5N. Astronomy and Astrophysics. 1998, 335: L1–L4. Bibcode:1998A&A...335L...1G. arXiv:astro-ph/9805105  (英语). 
  167. ^ Irvine, W. M.; et al. A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1. The Astrophysical Journal Letters. 1988, 335: L89–L93. Bibcode:1988ApJ...335L..89I. doi:10.1086/185346 (英语). 
  168. ^ 168.0 168.1 168.2 168.3 Agúndez, M.; et al. New molecules in IRC +10216: confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN. Astronomy and Astrophysics. 2014, 570: A45. Bibcode:2014A&A...570A..45A. arXiv:1408.6306 . doi:10.1051/0004-6361/201424542 (英语). 
  169. ^ 169.0 169.1 Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space. NRAO Press Release. 2001-10-01: 16 [2006-12-20]. Bibcode:2001nrao.pres...16.. (原始内容存档于2007-03-12) (英语). 
  170. ^ 170.0 170.1 Dickens, J. E.; et al. Detection of Interstellar Ethylene Oxide (c-C2H4O). The Astrophysical Journal. 1997, 489 (2): 753–757. Bibcode:1997ApJ...489..753D. PMID 11541726. doi:10.1086/304821 (英语). 
  171. ^ Kaifu, N.; Takagi, K.; Kojima, T. Excitation of interstellar methylamine. The Astrophysical Journal. 1975, 198: L85–L88. Bibcode:1975ApJ...198L..85K. doi:10.1086/181818 (英语). 
  172. ^ McCarthy, M. C.; et al. Laboratory and Astronomical Identification of the Negative Molecular Ion C6H. The Astrophysical Journal. 2006, 652 (2): L141–L144. Bibcode:2006ApJ...652L.141M. doi:10.1086/510238 (英语). 
  173. ^ McGuire, Brett A; Burkhardt, Andrew M; Shingledecker, Christopher N; Kalenskii, Sergei V; Herbst, Eric; Remijan, Anthony J; McCarthy, Michael C. Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope. The Astrophysical Journal. 2017, 843 (2): L28. Bibcode:2017ApJ...843L..28M. arXiv:1706.09766 . doi:10.3847/2041-8213/aa7ca3 (英语). 
  174. ^ Halfven, D. T.; et al. Interstellar Detection of Methyl Isocyanate CH3NCO in Sgr B2(N): A Link from Molecular Clouds to Comets. The Astrophysical Journal. 2015, 812 (1): L5 [2019-08-27]. Bibcode:2015ApJ...812L...5H. arXiv:1509.09305 . doi:10.1088/2041-8205/812/1/L5. (原始内容存档于2020-03-09) (英语). 
  175. ^ Zeng, S.; Quénard, D.; Jiménez-Serra, I.; Martín-Pintado, J.; Rivilla, V. M.; Testi, L.; Martín-Doménech, R. First detection of the pre-biotic molecule glycolonitrile (HOCH2CN) in the interstellar medium. Monthly Notices of the Royal Astronomical Society Letters. 2019, 484 (1): L43–L48. Bibcode:2019MNRAS.484L..43Z. arXiv:1901.02576 . doi:10.1093/mnrasl/slz002 (英语). 
  176. ^ 176.0 176.1 Mehringer, David M.; et al. Detection and Confirmation of Interstellar Acetic Acid. The Astrophysical Journal Letters. 1997, 480 (1): L71. Bibcode:1997ApJ...480L..71M. doi:10.1086/310612 (英语). 
  177. ^ 177.0 177.1 Lovas, F. J.; et al. Hyperfine Structure Identification of Interstellar Cyanoallene toward TMC-1. The Astrophysical Journal Letters. 2006, 637 (1): L37–L40. Bibcode:2006ApJ...637L..37L. doi:10.1086/500431 (英语). 
  178. ^ 178.0 178.1 Sincell, Mark. The Sweet Signal of Sugar in Space. Science (American Association for the Advancement of Science). 2006-06-27 [2016-01-14]. (原始内容存档于2016-03-04) (英语). 
  179. ^ Loomis, R. A.; et al. The Detection of Interstellar Ethanimine CH3CHNH) from Observations Taken during the GBT PRIMOS Survey. The Astrophysical Journal Letters. 2013, 765 (1): L9. Bibcode:2013ApJ...765L...9L. arXiv:1302.1121 . doi:10.1088/2041-8205/765/1/L9 (英语). 
  180. ^ Guelin, M.; et al. Detection of a new linear carbon chain radical: C7H. Astronomy and Astrophysics. 1997, 317: L37–L40. Bibcode:1997A&A...317L...1G (英语). 
  181. ^ Belloche, A.; et al. Detection of amino acetonitrile in Sgr B2(N). Astronomy and Astrophysics. 2008, 482 (1): 179–196. Bibcode:2008A&A...482..179B. arXiv:0801.3219 . doi:10.1051/0004-6361:20079203 (英语). 
  182. ^ Remijan, Anthony J.; et al. Observational Results of a Multi-telescope Campaign in Search of Interstellar Urea [(NH2)2CO]. The Astrophysical Journal. 2014, 783 (2): 77. Bibcode:2014ApJ...783...77R. arXiv:1401.4483 . doi:10.1088/0004-637X/783/2/77 (英语). 
  183. ^ 183.0 183.1 Remijan, Anthony J.; et al. Methyltriacetylene (CH3C6H) toward TMC-1: The Largest Detected Symmetric Top. The Astrophysical Journal. 2006, 643 (1): L37–L40. Bibcode:2006ApJ...643L..37R. doi:10.1086/504918 (英语). 
  184. ^ Snyder, L. E.; et al. Radio Detection of Interstellar Dimethyl Ether. The Astrophysical Journal. 1974, 191: L79–L82. Bibcode:1974ApJ...191L..79S. doi:10.1086/181554 (英语). 
  185. ^ Zuckerman, B.; et al. Detection of interstellar trans-ethyl alcohol. The Astrophysical Journal. 1975, 196 (2): L99–L102. Bibcode:1975ApJ...196L..99Z. doi:10.1086/181753 (英语). 
  186. ^ Cernicharo, J.; Guelin, M. Discovery of the C8H radical. Astronomy and Astrophysics. 1996, 309: L26–L30. Bibcode:1996A&A...309L..27C (英语). 
  187. ^ Brünken, S.; et al. Detection of the Carbon Chain Negative Ion C8H in TMC-1. The Astrophysical Journal. 2007, 664 (1): L43–L46. Bibcode:2007ApJ...664L..43B. doi:10.1086/520703 (英语). 
  188. ^ Remijan, Anthony J.; et al. Detection of C8H and Comparison with C8H toward IRC +10 216. The Astrophysical Journal. 2007, 664 (1): L47–L50. Bibcode:2007ApJ...664L..47R. doi:10.1086/520704 (英语). 
  189. ^ 189.0 189.1 189.2 Bell, M. B.; et al. Detection of HC11N in the Cold Dust Cloud TMC-1. The Astrophysical Journal Letters. 1997, 483 (1): L61–L64. Bibcode:1997ApJ...483L..61B. arXiv:astro-ph/9704233 . doi:10.1086/310732 (英语). 
  190. ^ Kroto, H. W.; et al. The detection of cyanohexatriyne, H (C≡ C)3CN, in Heiles's cloud 2. The Astrophysical Journal. 1978, 219: L133–L137. Bibcode:1978ApJ...219L.133K. doi:10.1086/182623 (英语). 
  191. ^ Marcelino, N.; et al. Discovery of Interstellar Propylene (CH2CHCH3): Missing Links in Interstellar Gas-Phase Chemistry. The Astrophysical Journal. 2007, 665 (2): L127–L130. Bibcode:2007ApJ...665L.127M. arXiv:0707.1308 . doi:10.1086/521398 (英语). 
  192. ^ Kolesniková, L.; et al. Spectroscopic Characterization and Detection of Ethyl Mercaptan in Orion. The Astrophysical Journal Letters. 2014, 784 (1): L7. Bibcode:2014ApJ...784L...7K. arXiv:1401.7810 . doi:10.1088/2041-8205/784/1/L7 (英语). 
  193. ^ Snyder, Lewis E.; et al. Confirmation of Interstellar Acetone. The Astrophysical Journal. 2002, 578 (1): 245–255. Bibcode:2002ApJ...578..245S. doi:10.1086/342273 (英语). 
  194. ^ Hollis, J. M.; et al. Interstellar Antifreeze: Ethylene Glycol. The Astrophysical Journal. 2002, 571 (1): L59–L62 [2010-07-18]. Bibcode:2002ApJ...571L..59H. doi:10.1086/341148. (原始内容存档于2020-06-11) (英语). 
  195. ^ Hollis, J. M. Complex Molecules and the GBT: Is Isomerism the Key? (PDF). Complex Molecules and the GBT: Is Isomerism the Key?. Proceedings of the IAU Symposium 231, Astrochemistry throughout the Universe. Asilomar, CA英语Asilomar State Beach. 2005: 119–127 [2019-08-27]. (原始内容存档 (PDF)于2016-03-04) (英语). 
  196. ^ McGuire, Brett A; Shingledecker, Christopher N; Willis, Eric R; Burkhardt, Andrew M; El-Abd, Samer; Motiyenko, Roman A; Brogan, Crystal L; Hunter, Todd R; Margulès, Laurent; Guillemin, Jean-Claude; Garrod, Robin T; Herbst, Eric; Remijan, Anthony J. ALMA Detection of Interstellar Methoxymethanol (CH3OCH2OH). The Astrophysical Journal. 2017, 851 (2): L46. Bibcode:2017ApJ...851L..46M. arXiv:1712.03256 . doi:10.3847/2041-8213/aaa0c3 (英语). 
  197. ^ McGuire, B. A.; Carroll, P. B.; Loomis, R. A.; Finneran, I. A.; Jewell, P. R.; Remijan, A. J.; Blake, G. A. Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science. 2016, 352 (6292): 1449. Bibcode:2016Sci...352.1449M. PMID 27303055. arXiv:1606.07483 . doi:10.1126/science.aae0328 (英语). 
  198. ^ 198.0 198.1 Belloche, A.; et al. Increased complexity in interstellar chemistry: Detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N). Astronomy and Astrophysics. 2009-05, 499 (1): 215–232. Bibcode:2009A&A...499..215B. arXiv:0902.4694 . doi:10.1051/0004-6361/200811550 (英语). 
  199. ^ Tercero, B.; et al. Discovery of Methyl Acetate and Gauche Ethyl Formate in Orion. The Astrophysical Journal Letters. 2013, 770 (1): L13. Bibcode:2013ApJ...770L..13T. arXiv:1305.1135 . doi:10.1088/2041-8205/770/1/L13 (英语). 
  200. ^ Eyre, Michael. Complex organic molecule found in interstellar space. BBC News. 2014-09-26 [2014-09-26]. (原始内容存档于2014-09-26) (英语). 
  201. ^ Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M. Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide. Science. 2014-09-26, 345 (6204): 1584–1587. Bibcode:2014Sci...345.1584B. PMID 25258074. arXiv:1410.2607 . doi:10.1126/science.1256678 (英语). 
  202. ^ McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science. 2018-01-12, 359 (6372): 202–205. Bibcode:2018Sci...359..202M. PMID 29326270. arXiv:1801.04228 . doi:10.1126/science.aao4890 (英语). 
  203. ^ 203.0 203.1 Cami, Jan; et al. Detection of C60 and C70 in a Young Planetary Nebula. Science. 2010-07-22, 329 (5996): 1180–2. Bibcode:2010Sci...329.1180C. PMID 20651118. doi:10.1126/science.1192035 (英语). 
  204. ^ Foing, B. H.; Ehrenfreund, P. Detection of two interstellar absorption bands coincident with spectral features of C60+. Nature. 1994, 369 (6478): 296–298. Bibcode:1994Natur.369..296F. doi:10.1038/369296a0. 
  205. ^ Berné, Olivier; Mulas, Giacomo; Joblin, Christine. Interstellar C60+. Astronomy and Astrophysics. 2013, 550: L4. Bibcode:2013A&A...550L...4B. arXiv:1211.7252 . doi:10.1051/0004-6361/201220730 (英语). 
  206. ^ 206.0 206.1 Lacour, S.; et al. Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines. Astronomy and Astrophysics. 2005, 430 (3): 967–977. Bibcode:2005A&A...430..967L. arXiv:astro-ph/0410033 . doi:10.1051/0004-6361:20041589 (英语). 
  207. ^ 207.0 207.1 207.2 207.3 Ceccarelli, Cecilia. Millimeter and infrared observations of deuterated molecules. Planetary and Space Science. 2002, 50 (12–13): 1267–1273. Bibcode:2002P&SS...50.1267C. doi:10.1016/S0032-0633(02)00093-4 (英语). 
  208. ^ Green, Sheldon. Collisional excitation of interstellar molecules - Deuterated water, HDO. The Astrophysical Journal Supplement Series. 1989, 70: 813–831. Bibcode:1989ApJS...70..813G. doi:10.1086/191358 (英语). 
  209. ^ Butner, H. M.; et al. Discovery of interstellar heavy water. The Astrophysical Journal. 2007, 659 (2): L137–L140. Bibcode:2007ApJ...659L.137B. doi:10.1086/517883. hdl:10261/2640 (英语). 
  210. ^ 210.0 210.1 210.2 210.3 Turner, B. E.; Zuckerman, B. Observations of strongly deuterated molecules - Implications for interstellar chemistry. The Astrophysical Journal Letters. 1978, 225: L75–L79. Bibcode:1978ApJ...225L..75T. doi:10.1086/182797 (英语). 
  211. ^ Lis, D. C.; et al. Detection of Triply Deuterated Ammonia in the Barnard 1 Cloud. The Astrophysical Journal. 2002, 571 (1): L55–L58. Bibcode:2002ApJ...571L..55L. doi:10.1086/341132 (英语). 
  212. ^ Hatchell, J. High NH2D/NH3 ratios in protostellar cores. Astronomy and Astrophysics. 2003, 403 (2): L25–L28. Bibcode:2003A&A...403L..25H. arXiv:astro-ph/0302564 . doi:10.1051/0004-6361:20030297 (英语). 
  213. ^ Turner, B. E. Detection of doubly deuterated interstellar formaldehyde (D2CO) - an indicator of active grain surface chemistry. The Astrophysical Journal Letters. 1990, 362: L29–L33. Bibcode:1990ApJ...362L..29T. doi:10.1086/185840 (英语). 
  214. ^ 214.0 214.1 Coutens, A.; et al. The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium. Astronomy and Astrophysics. 2016-05-09, 590: L6. Bibcode:2016A&A...590L...6C. arXiv:1605.02562 . doi:10.1051/0004-6361/201628612 (英语). 
  215. ^ Cernicharo, J.; et al. Detection of the Ammonium ion in space. The Astrophysical Journal Letters. 2013, 771 (1): L10. Bibcode:2013ApJ...771L..10C. arXiv:1306.3364 . doi:10.1088/2041-8205/771/1/L10 (英语). 
  216. ^ Doménech, J. L.; et al. Improved Determinination of the 10-00 Rotational Frequency of NH3D+ from the High-Resolution Spectrum of the ν4 Infrared Band. The Astrophysical Journal Letters. 2013, 771 (1): L11. Bibcode:2013ApJ...771L..11D. arXiv:1306.3792 . doi:10.1088/2041-8205/771/1/L10 (英语). 
  217. ^ Gerin, M.; et al. Interstellar detection of deuterated methyl acetylene. Astronomy and Astrophysics. 1992, 253 (2): L29–L32. Bibcode:1992A&A...253L..29G (英语). 
  218. ^ Markwick, A. J.; Charnley, S. B.; Butner, H. M.; Millar, T. J. Interstellar CH3CCD. The Astrophysical Journal. 2005, 627 (2): L117–L120. Bibcode:2005ApJ...627L.117M. doi:10.1086/432415 (英语). 
  219. ^ Agúndez, M.; et al. Tentative detection of phosphine in IRC +10216. Astronomy and Astrophysics. 2008-06-04, 485 (3): L33. Bibcode:2008A&A...485L..33A. arXiv:0805.4297 . doi:10.1051/0004-6361:200810193 (英语). 
  220. ^ Gupta, H.; et al. Laboratory Measurements and Tentative Astronomical Identification of H2NCO+ (PDF). The Astrophysical Journal Letters. 2013, 778 (1): L1 [2019-08-27]. Bibcode:2013ApJ...778L...1G. doi:10.1088/2041-8205/778/1/L1. (原始内容存档 (PDF)于2017-12-02) (英语). 
  221. ^ Snyder, L. E.; et al. A Rigorous Attempt to Verify Interstellar Glycine. The Astrophysical Journal. 2005, 619 (2): 914–930. Bibcode:2005ApJ...619..914S. arXiv:astro-ph/0410335 . doi:10.1086/426677 (英语). 
  222. ^ Kuan, Y. J.; et al. Interstellar Glycine. The Astrophysical Journal. 2003, 593 (2): 848–867. Bibcode:2003ApJ...593..848K. doi:10.1086/375637 (英语). 
  223. ^ Widicus Weaver, S. L.; Blake, G. A. 1,3-Dihydroxyacetone in Sagittarius B2(N-LMH): The First Interstellar Ketose. The Astrophysical Journal Letters. 2005, 624 (1): L33–L36. Bibcode:2005ApJ...624L..33W. doi:10.1086/430407 (英语). 
  224. ^ Fuchs, G. W.; et al. Trans-Ethyl Methyl Ether in Space: A new Look at a Complex Molecule in Selected Hot Core Regions. Astronomy and Astrophysics. 2005, 444 (2): 521–530 [2010-07-18]. Bibcode:2005A&A...444..521F. arXiv:astro-ph/0508395 . doi:10.1051/0004-6361:20053599. (原始内容存档于2011-07-19) (英语). 
  225. ^ Iglesias-Groth, S.; et al. Evidence for the Naphthalene Cation in a Region of the Interstellar Medium with Anomalous Microwave Emission. The Astrophysical Journal Letters. 2008-09-20, 685 (1): L55–L58. Bibcode:2008ApJ...685L..55I. arXiv:0809.0778 . doi:10.1086/592349.  - This spectral assignment has not been independently confirmed, and is described by the authors as "tentative" (page L58).
  226. ^ García-Hernández, D. A.; et al. The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae. The Astrophysical Journal Letters. 2011, 737 (2): L30. Bibcode:2011ApJ...737L..30G. arXiv:1107.2595 . doi:10.1088/2041-8205/737/2/L30 (英语). 
  227. ^ Iglesias-Groth, S.; et al. A search for interstellar anthracene toward the Perseus anomalous microwave emission region. Monthly Notices of the Royal Astronomical Society. 2010-05, 407 (4): 2157–2165. Bibcode:2010MNRAS.407.2157I. arXiv:1005.4388 . doi:10.1111/j.1365-2966.2010.17075.x (英语). 

外部链接