鋰 (藥物)

鋰鹽(英語:Lithium salts)為含離子的離子化合物,臨床上通常指碳酸鋰。鋰鹽在醫學上可作為一種精神科藥物,用於躁鬱症與其他抗憂鬱藥治療無效的重性抑郁障碍[2]。鋰能夠降低這些疾病患者的症狀發生,進而減少患者自殺的機會。[3],經口服後由胃腸吸收,而經腎臟由尿代謝[2]

鋰鹽
碳酸锂的2D化學結構示意圖
臨床資料
商品名英语Drug nomenclatureMany[1]
AHFS/Drugs.comMonograph
MedlinePlusa681039
懷孕分級
  • : D
给药途径口服、腸道外給藥
ATC碼
法律規範狀態
法律規範
藥物動力學數據
生物利用度視配方而定
血漿蛋白結合率
药物代谢腎代謝
生物半衰期24小時,老年人36小時[2]
排泄途徑>95% 經排除
识别信息
  • Lithium(1+)
CAS号7439-93-2
PubChem CID
DrugBank
ChemSpider
UNII
ChEBI
化学信息
化学式Li+
摩尔质量6.941 g/mol
3D模型(JSmol英语JSmol
  • [Li+]
  • InChI=1S/Li/q+1
  • Key:HBBGRARXTFLTSG-UHFFFAOYSA-N

鋰鹽的常見副作用有頻尿、手抖、流涎(sialorrhea)、鉀離子缺乏等[2]。嚴重者有甲狀腺機能低下症尿崩症鋰中毒[2]。因此建議監測其血中濃度,降低中毒風險[2]。如果血液中鋰濃度過高,可能出現腹瀉、嘔吐、協調不良、嗜睡、耳鸣[2]孕婦使用鋰化合物可能造成胎兒發育問題[2]哺乳期婦女服用則似無問題[4]。鋰化合物屬一種情緒穩定劑[2]。這種藥物的作用機轉尚不明確。[2]

鋰鹽是一種白色結晶性粉末;無臭,無味;水溶液呈現鹼性反應。有明顯抑制狂躁情緒的作用,還可改善思覺失調症的情感障礙。可抑制去甲腎上腺素能和多巴胺能神經末梢遞質釋放,增加突觸前膜對遞質的再攝取,使突觸后膜受體敏感性降低,增加腦內5-羥色胺合成。口服易吸收,不與血漿蛋白結合。體內的排泄速度個體差異很大。治療躁鬱症時,劑量與中毒量比較接近。大于1.5mmol/L,出現輕度毒性反應;大于2mmol/L,有嚴重反應發生。必須在血藥濃度監測下使用。高齡患者或腎功能不全者不適合服用。

在1800年代鋰鹽曾被用於治療痛風癫痫癌症。1948年,澳洲醫師John Cade英语John Cade開始將鋰鹽使用於精神性疾病[5]。鋰鹽也是被列入世界卫生组织基本药物标准清单的基本藥物,為基礎公衛體系必備藥物之一[6]。本品屬通用名药物[2],2014年的批發價大約是每日0.12 到 0.20 美金[7]。在美國,每日藥價大約花費 0.90 到 1.20 美金[2]

用途

主要用于双相障碍。可以预防未来的躁狂期,对已有躁狂也有控制作用。[8]处理抑郁期的效果比丙戊酸确切,但不如抗精神病药物。[9][10][11]或许对双相障碍合并的物质滥用障碍也有帮助。[12][13][14]传统上认为可以降低自杀,但证据并不支持。[15]

也在其他药物无效时用于思觉失调,一般不单独使用。[2]

对于其他药物无效的重性抑郁障碍也有效。一般作为SSRI的附加治疗,[16][17][18]不但可以提高起效率,还可以缩短起效所需时间。[19]也有用于附加给拉莫三嗪等抗癫痫药的。[20]极少有单独用的,似乎用于复发者比用于新发者更有效。[21]

也用于阿尔茨海默症。可以缓解疾病发展。[22][23]似乎也有预防作用。双相患者患阿尔茨海默症概率总体高于常人,但长期服用锂的双相患者患病率低于常人。[22]使用丙戊酸者和锂、丙戊酸联用者的发病率高于常人。[24]

注意事項

双相障碍服用鋰鹽的注意事項是要把血中的鋰濃度控制在安全而有效的範圍內,發病的急性期要控制在0.8-1.2mmol/L,穩定期要維持在0.4-1.0 mmol/L。濃度太高,會有中毒的危險,太低則無法達到療效。而這裡所謂的鋰濃度指的是距離最後一次服鋰鹽9到13小時抽血測定的資料,也就是一天當中血中鋰濃度最低的值。開始服藥的頭二個星期,要每週測量血中鋰濃度,接下來每個月測量一次,之後可以每半年抽血追蹤。

现时锂对双相障碍的最低有效剂量有持续向低调整的趋势,建议最低值已从传统的0.6mmol/L调整到0.4mmol/L。原则上说,使用锂应采用一个患者身上的最低有效剂量,所以劑量要緩慢增加。[25]低浓度对应的剂量对于一些患者来说不足以控制发病,[26]但也有重分析指出更大的因素是低剂量时药物的谷浓度过低,而非平均浓度过低。[27]采用缓释制剂可以降低峰值浓度,降低不良反应,对平均和谷值则影响不大。[28]

锂有异味。飯後服藥,比較不會不舒服。食物也会增加吸收率。[28]

对于阿尔茨海默症患者,用0.3mmol/L左右的剂量足矣。[29]对抑郁症,0.6–0.8mmol/L也足够,0.2–0.6mmol/L也可能有效。[30]

藥物副作用與不良反應

  1. 胃腸方面:噁心及嘔吐是最常見的副作用,大約出現在50%的人身上。分成多次在飯後服藥可以減輕這方面的不舒服。噁心嘔吐在剛開始服藥的幾個星期會發生,會慢慢減輕,如果是治療的後期變得比較嚴重,則要考慮鋰中毒的可能性。另外有30%的人會抱怨體重增加。
  2. 中樞神經及肌肉方面:這方面包括疲倦、頭暈、覺得手腳較沉重無力、手抖、思變得比較遲鈍不敏銳。一般治療劑量下,鋰引起的手抖屬微抖,鋰中毒時,手抖會很明顯。
  3. 腎臟系統腎臟系統:頻尿及易口渴也是常見的副作用,多數人這類副作用會慢慢改善,但是少數人會出現尿崩症。所以在治療前需檢查腎功能,治療期間也要定期檢查腎功能。
  4. 心臟血管系統:鋰可引起類似低血鉀的心電圖變化,這些變化通常是良性的。少數人會出現較嚴重的心臟竇節傳導障礙,所以心臟病患者用鋰鹽要小心。
  5. 皮膚方面:有些人會出現長面皰、掉髮。少數人會出現牛皮癬。另外有些人服用鋰鹽後會出現史蒂芬斯-強森症候群,嚴重者會致命。
  6. 甲狀腺功能:有些人會呈現甲狀腺機能低下,一些人在繼續治療中,甲狀腺機能會復原,有一些需要服用甲狀腺荷爾蒙。
  7. 精神方面:有些人服用後會有躁動的情況(兩腳不住跺著地面的行為)。
  • (注意)長期服用鋰鹽可能影響甲狀腺和腎功能,患者必須定期追蹤。

对于大部分的患者,锂不会降低智力,反而会稍微出现一些改善。[31]

约有5%的患者在服用锂时出现体重上升。体重上升一开头会比较快,但之后就会在1–2 kg这个范围内稳定下来。[32]

肾脏

比较老的文献认为锂和肾病有关联性。[33][34] 大约一半的长期用者有腎源性尿崩症[34]传统上认为还可能恶化到后期尿崩,[35][36]甚至0.2-0.7%最终肾衰。[37]

更新的、更严谨的临床数据并不能证明锂有这些严重伤害。[30]Nielsen et al. (2018)收集了2010年起的6个大型观察式研究,发现肾功能降低的情况有被监视偏差夸大。[38]Davis et al. (2018)采用1977–2018的文献,发现锂和慢性肾病和肾衰竭的关联证据不足,且研究数据互相矛盾。[39]

全美国的研究指出,锂维持在在0.6–0.8 mmol/L浓度,并每三到六月测量肌酸酐,足以防止肾病产生。[38]

甲状腺

传统认为锂会导致甲状腺功能减退(甲减)。实际上甲减是双相患者常见的并发症,和锂没有统计学上有意义的关系。Lambert 等人 (2016) 比较了使用 9 种不同药物治疗的双相情感障碍患者的甲状腺功能减退症发生率,发现锂盐使用者在双相情感障碍患者中的甲状腺功能减退症发生率并不特别高 (8.8%),仅为 奥卡西平 使用者 (6.3%) 的 1.39 倍。锂盐和喹硫平在甲状腺功能减退症发生率方面没有统计学差异。然而,锂盐使用者接受甲状腺功能减退症检测的频率比使用其他药物的人高得多。作者写道,在理解锂盐对甲状腺的影响时可能存在监测偏差,因为锂盐使用者接受检测的频率是其他药物的 2.3 到 3.1 倍。此外,作者认为,由于无论是否接受锂盐治疗,甲状腺功能减退症在双相情感障碍患者中都很常见,因此应该对所有双相情感障碍患者进行定期甲状腺检测,而不仅仅是那些接受锂盐治疗的患者。[40][38]

怀孕

病例报告显示锂会导致先天性心臟病。发病率和孕期及剂量相关,孕早期高剂量更危险。[41][42][43]

由于停用锂后果可能严重,也有医生权衡利弊后推荐怀孕病人继续使用的情况。[44]推荐这类病人使用超声检测胎儿心脏发育。[45]

未发现锂对胎儿的大脑发育有影响。[46]

哺乳

少量锂进入乳汁,暂不明确是否有后果。[47][48][49]

服用過量和中毒

當人意外或故意服用過量,也許會發生鋰中毒的急性作用。當人在治療中累積高劑量,也許會發生鋰中毒的慢性作用。 症狀包括恶心呕吐腹瀉虛弱失調混亂英语Confusion無生氣英语Lethargy多尿症癲癇發作昏迷。其它鋰中毒反應包括普遍的顫抖肌束顫搐英语Fasciculation驚厥腎功能衰竭[50] 關於急性鋰中毒或長期用恰當的劑量治療,從中毒存活下來的人可能產生持續性的神經毒性,許多人已經描述是一種"不可逆的神經鋰中毒症狀" (SILENT)。包括小腦的官能障礙。[51]

服用過量時,通常血液濃度超過1.5 mmol Li+/l, 可能是嚴重的,並且中毒反應包括顫抖失調發音困難英语Dysarthria眼球震颤腎功能衰竭混亂英语Confusion驚厥。假如這些潛在的危害症狀出現,應該停止治療,依血液的鋰濃度再決定回復鋰中毒的措施。

鋰中毒會消耗鈉。同時使用利尿劑時,禁止由遠位尿細管英语distal tubule攝取鈉(例如:噻嗪類利尿劑),這是應該避免而且有危害的,因為這可能會加強鋰在近位尿細管英语proximal convoluted tubule的再吸收,導致潛在的中毒層級提高。在輕微的案例,抽出鋰並且給予充足的鈉流体將會從中毒中回復。血液濃度超過2.5 mmol Li+ /l通常算是嚴重中毒,需要急救。當達到中毒濃度,最強烈的中毒也許有1或2天的延遲才發生。

  • 中毒:鋰中毒的症狀從輕到重如下。
    • 輕度中毒:血液鋰濃度在1.5-2.0 mmol/L,人講話會變得口齒不清、顯著手抖、水瀉、嗜睡。
    • 中度中毒:血液鋰濃度超過2.0 mmol/L時,病人會呈現意識障礙、肌腱反射高亢、抽筋、血壓不穩、循環衰竭、急性腎小管壞死、心電圖異常、全身僵硬。
    • 重度中毒:血液鋰濃度超過4.0 mmol/L可能會危及生命,或留下腦不可逆性性的損傷。
  1. 認知障礙。
  2. 有些患者則有口齒不清、嗜睡的情形出現,須考慮是否為血中鋰鹽濃度過高所起的中毒現象,須緊急送醫。
  3. 話多、情緒亢奮、每天睡眠少於3小時,嚴重會有暴力傾向,甚至自殺等。

机理

目前对作用机理不明确,不排除同时存在多个机理的可能。比较受支持的理论是锂激活MEK通路,从而抑制GSK3B英语GSK3B,激活mTOR通路,通过Akt/PKB信号通路起到神经保护作用。[52]支持这一理论的证据是:

  • GSK3B受单胺系统调控,躁狂期被激活。[53][52]
  • GSK3B通过磷酸基化抑制Β-连环蛋白和CREB两种转录因子,导致神经营养因子表达下降。锂可以造成BDNF等因子表达回升。[54][55][56]长期使用锂的患者负责情绪和认知的大脑区域,灰质体积有提升。[57]不用锂双相患者的大脑白质完整性较正常人低,但用锂的则无区别。[58]丙戊酸对灰质有类似的效果,对白质没有。[57]长期使用锂可以增加双相患者的认知能力。[31]
  • 抑制CREB也会增加Bcl-2转录。这样可以增加线粒体抗氧化能力,抑制细胞凋亡,延长神经元寿命。[57][59]

此外锂也会通过AP-1转录因子增加中脑星形胶质细胞衍生的神经营养因子英语mesencephalic astrocyte-derived neurotrophic factor表达。MANF可以调控涉及未折疊蛋白反應的因子GRP78英语GRP78[60]

另外还有pAp-磷酸酶、[61]一氧化氮、[62]、NMDA受体[63]等可能原理。

研究

暂不清楚锂对于人类寿命的影响。曾有研究说锂导致端粒延长、全因死亡率下降,但2024年大型的英国BioBank研究并无发现此效果,只是静息心率稍低。[64]2023年基于英国BioBank的研究声称锂可降低全因死亡率,但由于数据授权原因(BioBank数据当时授权给作者用于新冠病毒相关研究)已撤回。[65]

參考資料

  1. ^ Lithium brands. Drugs.com. [4 April 2017]. (原始内容存档于5 April 2017). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 Lithium Salts. The American Society of Health-System Pharmacists. [Dec 1, 2015]. (原始内容存档于2015-12-08). 
  3. ^ Baldessarini, Ross J; Tondo, Leonardo; Davis, Paula; Pompili, Maurizio; Goodwin, Frederick K; Hennen, John. Decreased risk of suicides and attempts during long-term lithium treatment: A meta-analytic review. Bipolar Disorders. 2006, 8 (5p2): 625–39. PMID 17042835. doi:10.1111/j.1399-5618.2006.00344.x. 
  4. ^ Lithium use while Breastfeeding. LactMed. 2015-03-10 [1 December 2015]. (原始内容存档于8 December 2015). 
  5. ^ Sneader, Walter. Drug discovery : a history Rev. and updated. Chichester: Wiley. 2005: 63. ISBN 9780471899792. (原始内容存档于2017-09-08). 
  6. ^ WHO Model List of Essential Medicines (19th List) (PDF). World Health Organization. April 2015 [8 December 2016]. (原始内容存档 (PDF)于13 December 2016). 
  7. ^ Lithium Carbonate. International Drug Price Indicator Guide. [1 December 2015]. [永久失效連結]
  8. ^ McKnight RF, de La Motte de Broöns de Vauvert SJ, Chesney E, Amit BH, Geddes J, Cipriani A. Lithium for acute mania. The Cochrane Database of Systematic Reviews. June 2019, 2019 (6): CD004048. PMC 6544558 . PMID 31152444. doi:10.1002/14651858.CD004048.pub4. 
  9. ^ Rakofsky JJ, Lucido MJ, Dunlop BW. Lithium in the treatment of acute bipolar depression: A systematic review and meta-analysis. Journal of Affective Disorders. July 2022, 308: 268–280. PMID 35429528. S2CID 248161621. doi:10.1016/j.jad.2022.04.058. 
  10. ^ Riedinger MA, van der Wee NJ, Giltay EJ, de Leeuw M. Lithium in bipolar depression: A review of the evidence. Human Psychopharmacology. September 2023, 38 (5): e2881. PMID 37789577. doi:10.1002/hup.2881 . hdl:10067/2003410151162165141 . 
  11. ^ Cai L, Chen G, Yang H, Bai Y. Efficacy and safety profiles of mood stabilizers and antipsychotics for bipolar depression: a systematic review. International Clinical Psychopharmacology. July 2023, 38 (4): 249–260. PMID 36947416. S2CID 257665886. doi:10.1097/YIC.0000000000000449. 
  12. ^ Rosenberg JM, Salzman C. Update: new uses for lithium and anticonvulsants. CNS Spectrums. November 2007, 12 (11): 831–841. PMID 17984856. S2CID 26227696. doi:10.1017/S1092852900015571. 
  13. ^ Frye MA, Salloum IM. Bipolar disorder and comorbid alcoholism: prevalence rate and treatment considerations. Bipolar Disorders. December 2006, 8 (6): 677–685. PMID 17156154. doi:10.1111/j.1399-5618.2006.00370.x. 
  14. ^ Vornik LA, Brown ES. Management of comorbid bipolar disorder and substance abuse. The Journal of Clinical Psychiatry. 2006, 67 (Suppl 7): 24–30. PMID 16961421. 
  15. ^ Nabi Z, Stansfeld J, Plöderl M, Wood L, Moncrieff J. Effects of lithium on suicide and suicidal behaviour: a systematic review and meta-analysis of randomised trials. Epidemiology and Psychiatric Sciences. September 2022, 31: e65. PMC 9533115 . PMID 36111461. doi:10.1017/S204579602200049X . 
  16. ^ Bauer M, Adli M, Ricken R, Severus E, Pilhatsch M. Role of lithium augmentation in the management of major depressive disorder. CNS Drugs. April 2014, 28 (4): 331–342. PMID 24590663. S2CID 256840. doi:10.1007/s40263-014-0152-8. 
  17. ^ Bauer M, Adli M, Baethge C, Berghöfer A, Sasse J, Heinz A, Bschor T. Lithium augmentation therapy in refractory depression: clinical evidence and neurobiological mechanisms. Canadian Journal of Psychiatry. August 2003, 48 (7): 440–448. PMID 12971013. doi:10.1177/070674370304800703. 
  18. ^ Undurraga J, Sim K, Tondo L, Gorodischer A, Azua E, Tay KH, Tan D, Baldessarini RJ. Lithium treatment for unipolar major depressive disorder: Systematic review. Journal of Psychopharmacology. February 2019, 33 (2): 167–176 [20 February 2024]. PMID 30698058. S2CID 59411183. doi:10.1177/0269881118822161. (原始内容存档于20 February 2024). 
  19. ^ Crossley, NA; Bauer, M. Acceleration and augmentation of antidepressants with lithium for depressive disorders: two meta-analyses of randomized, placebo-controlled trials.. The Journal of clinical psychiatry. 2007-06, 68 (6): 935–40. PMID 17592920. doi:10.4088/jcp.v68n0617. 
  20. ^ Finley PR. Drug Interactions with Lithium: An Update. Clinical Pharmacokinetics. August 2016, 55 (8): 925–941. PMID 26936045. doi:10.1007/s40262-016-0370-y. 
  21. ^ Bauer M, Gitlin M. Treatment of Depression with Lithium. The Essential Guide to Lithium Treatment. Cham: Springer International Publishing. 2016: 71–80. ISBN 978-3-319-31212-5. doi:10.1007/978-3-319-31214-9_7. 
  22. ^ 22.0 22.1 Haussmann R, Noppes F, Brandt MD, Bauer M, Donix M. Lithium: A therapeutic option in Alzheimer's disease and its prodromal stages?. Neuroscience Letters. August 2021, 760: 136044. PMID 34119602. S2CID 235385875. doi:10.1016/j.neulet.2021.136044. 
  23. ^ Wei HF, Anchipolovsky S, Vera R, Liang G, Chuang DM. Potential mechanisms underlying lithium treatment for Alzheimer's disease and COVID-19. European Review for Medical and Pharmacological Sciences. March 2022, 26 (6): 2201–2214. PMC 9173589 . PMID 35363371. doi:10.26355/eurrev_202203_28369. 
  24. ^ Moon, Woori; Ji, Eunjeong; Shin, Juyoung; Kwon, Jun Soo; Kim, Ki Woong. Effect of valproate and lithium on dementia onset risk in bipolar disorder patients. Scientific Reports. 2022-08-19, 12 (1). doi:10.1038/s41598-022-18350-1. 
  25. ^ Grandjean EM, Aubry JM. Lithium: updated human knowledge using an evidence-based approach. Part II: Clinical pharmacology and therapeutic monitoring. CNS Drugs (Springer Science and Business Media LLC). 2009, 23 (4): 331–349. PMID 19374461. S2CID 38042857. doi:10.2165/00023210-200923040-00005. 
  26. ^ Solomon DA, Ristow WR, Keller MB, Kane JM, Gelenberg AJ, Rosenbaum JF, Warshaw MG. Serum lithium levels and psychosocial function in patients with bipolar I disorder. The American Journal of Psychiatry. October 1996, 153 (10): 1301–1307. PMID 8831438. doi:10.1176/ajp.153.10.1301. 
  27. ^ Perlis RH, Sachs GS, Lafer B, Otto MW, Faraone SV, Kane JM, Rosenbaum JF. Effect of abrupt change from standard to low serum levels of lithium: a reanalysis of double-blind lithium maintenance data. The American Journal of Psychiatry. July 2002, 159 (7): 1155–1159. PMID 12091193. doi:10.1176/appi.ajp.159.7.1155. 
  28. ^ 28.0 28.1 Girardi, P; Brugnoli, R; Manfredi, G; Sani, G. Lithium in Bipolar Disorder: Optimizing Therapy Using Prolonged-Release Formulations.. Drugs in R&D. 2016-12, 16 (4): 293–302. PMID 27770296. doi:10.1007/s40268-016-0139-7. 
  29. ^ Devanand, DP; Crocco, E; Forester, BP; Husain, MM; Lee, S; Vahia, IV; Andrews, H; Simon-Pearson, L; Imran, N; Luca, L; Huey, ED; Deliyannides, DA; Pelton, GH. Low Dose Lithium Treatment of Behavioral Complications in Alzheimer's Disease: Lit-AD Randomized Clinical Trial.. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry. 2022-01, 30 (1): 32–42. PMID 34059401. doi:10.1016/j.jagp.2021.04.014. 
  30. ^ 30.0 30.1 Strawbridge R, Young AH. Lithium: how low can you go?. International Journal of Bipolar Disorders. January 2024, 12 (1): 4. PMC 10828288 . PMID 38289425. doi:10.1186/s40345-024-00325-y . An in-depth recent study reported high interindividual variation but steeper declines in estimated glomerular filtration rate (eGFR) explained by lithium use but also found wrongful clinical attribution of some chronic kidney disease (CKD) cases to lithium (Fransson et al. 2022) which may have increased other records-based studies’ estimates (Strawbridge and Young 2022). [...] 
  31. ^ 31.0 31.1 Burdick, KE; Millett, CE; Russo, M; Alda, M; Alliey-Rodriguez, N; Anand, A; Balaraman, Y; Berrettini, W; Bertram, H; Calabrese, JR; Calkin, C; Conroy, C; Coryell, W; DeModena, A; Feeder, S; Fisher, C; Frazier, N; Frye, M; Gao, K; Garnham, J; Gershon, ES; Glazer, K; Goes, FS; Goto, T; Harrington, GJ; Jakobsen, P; Kamali, M; Kelly, M; Leckband, S; Løberg, EM; Lohoff, FW; Maihofer, AX; McCarthy, MJ; McInnis, M; Morken, G; Nievergelt, CM; Nurnberger, J; Oedegaard, KJ; Ortiz, A; Ritchey, M; Ryan, K; Schinagle, M; Schwebel, C; Shaw, M; Shilling, P; Slaney, C; Stapp, E; Tarwater, B; Zandi, P; Kelsoe, JR. The association between lithium use and neurocognitive performance in patients with bipolar disorder.. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2020-09, 45 (10): 1743–1749. PMID 32349118. doi:10.1038/s41386-020-0683-2. 
  32. ^ 引用错误:没有为名为Malhi_2013b的参考文献提供内容
  33. ^ Nielsen J, Kwon TH, Christensen BM, Frøkiaer J, Nielsen S. Dysregulation of renal aquaporins and epithelial sodium channel in lithium-induced nephrogenic diabetes insipidus. Seminars in Nephrology. May 2008, 28 (3): 227–244. PMID 18519084. doi:10.1016/j.semnephrol.2008.03.002. 
  34. ^ 34.0 34.1 Alexander MP, Farag YM, Mittal BV, Rennke HG, Singh AK. Lithium toxicity: a double-edged sword. Kidney International. January 2008, 73 (2): 233–237. PMID 17943083. doi:10.1038/sj.ki.5002578 . 
  35. ^ Sands JM, Bichet DG. Nephrogenic diabetes insipidus. Annals of Internal Medicine. February 2006, 144 (3): 186–194. PMID 16461963. S2CID 6732380. doi:10.7326/0003-4819-144-3-200602070-00007. 
  36. ^ Garofeanu CG, Weir M, Rosas-Arellano MP, Henson G, Garg AX, Clark WF. Causes of reversible nephrogenic diabetes insipidus: a systematic review. American Journal of Kidney Diseases. April 2005, 45 (4): 626–637. PMID 15806465. doi:10.1053/j.ajkd.2005.01.008. 
  37. ^ Presne C, Fakhouri F, Noël LH, Stengel B, Even C, Kreis H, Mignon F, Grünfeld JP. Lithium-induced nephropathy: Rate of progression and prognostic factors. Kidney International. August 2003, 64 (2): 585–592. PMID 12846754. doi:10.1046/j.1523-1755.2003.00096.x . 
  38. ^ 38.0 38.1 38.2 Kessing LV. Why is lithium [not] the drug of choice for bipolar disorder? a controversy between science and clinical practice. International Journal of Bipolar Disorders. January 2024, 12 (1): 3. PMC 10792154 . PMID 38228882. doi:10.1186/s40345-023-00322-7 . 
  39. ^ Davis J, Desmond M, Berk M. Lithium and nephrotoxicity: Unravelling the complex pathophysiological threads of the lightest metal. Nephrology (Wiley). October 2018, 23 (10): 897–903. PMID 29607573. S2CID 4552345. doi:10.1111/nep.13263 . hdl:11343/283773 . 
  40. ^ Lambert CG, Mazurie AJ, Lauve NR, Hurwitz NG, Young SS, Obenchain RL, Hengartner NW, Perkins DJ, Tohen M, Kerner B. Hypothyroidism risk compared among nine common bipolar disorder therapies in a large US cohort. Bipolar Disorders. May 2016, 18 (3): 247–260. PMC 5089566 . PMID 27226264. doi:10.1111/bdi.12391. 
  41. ^ Essential Reads: Lithium and Pregnancy. MGH Center for Women's Mental Health. 2021-03-04 [2024-12-05] (美国英语). 
  42. ^ Poels EM, Bijma HH, Galbally M, Bergink V. Lithium during pregnancy and after delivery: a review. International Journal of Bipolar Disorders. December 2018, 6 (1): 26. PMC 6274637 . PMID 30506447. doi:10.1186/s40345-018-0135-7 . 
  43. ^ Reprotox • Login. reprotox.org. [2024-12-05]. 
  44. ^ Lithium in pregnancy and breastfeeding. www.rcpsych.ac.uk. [2024-12-05] (英语). 
  45. ^ Armstrong C. ACOG Guidelines on Psychiatric Medication Use During Pregnancy and Lactation. American Family Physician. 2008-09-15, 78 (6): 772–778 (美国英语). 
  46. ^ Poels, Eline M. P.; Kamperman, Astrid M.; Bijma, Hilmar H.; Honig, Adriaan; van Kamp, Inge L.; Kushner, Steven A.; Hoogendijk, Witte J. G.; Bergink, Veerle; White, Tonya. Brain development after intrauterine exposure to lithium: A magnetic resonance imaging study in school‐age children. Bipolar Disorders. 2023-05, 25 (3): 181–190. doi:10.1111/bdi.13297. 
  47. ^ Reprotox • Login. reprotox.org. [2024-12-05]. 
  48. ^ Nonacs R. Essential Reads: Lithium and Breastfeeding (2024) - MGH Center for Women's Mental Health. 2024-11-13 [2024-12-05] (美国英语). 
  49. ^ Pregnancy, breastfeeding and fertility while taking lithium. nhs.uk. 2023-08-14 [2024-12-05] (英语). 
  50. ^ Gelder, M., Mayou, R. and Geddes, J. 2005. Psychiatry. 3rd ed. New York: Oxford. pp249.
  51. ^ Adityanjee; Munshi, Thampy. The syndrome of irreversible lithium-effectuated neurotoxicity.. Clinical Neuropharmacology. 2005, 28 (1): 38–49. PMID 15714160. doi:10.1097/01.wnf.0000150871.52253.b7. 
  52. ^ 52.0 52.1 Malhi GS, Masson M, Bellivier F. The Science and Practice of Lithium Therapy. Springer International Publishing. 2017: 62. ISBN 978-3-319-45923-3. OCLC 979600268. 
  53. ^ Einat H, Manji HK. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biological Psychiatry. June 2006, 59 (12): 1160–1171. PMID 16457783. S2CID 20669215. doi:10.1016/j.biopsych.2005.11.004. 
  54. ^ Gould TD, Picchini AM, Einat H, Manji HK. Targeting glycogen synthase kinase-3 in the CNS: implications for the development of new treatments for mood disorders. Current Drug Targets. November 2006, 7 (11): 1399–1409. PMID 17100580. doi:10.2174/1389450110607011399. 
  55. ^ Böer U, Cierny I, Krause D, Heinrich A, Lin H, Mayr G, Hiemke C, Knepel W. Chronic lithium salt treatment reduces CRE/CREB-directed gene transcription and reverses its upregulation by chronic psychosocial stress in transgenic reporter gene mice. Neuropsychopharmacology. September 2008, 33 (10): 2407–2415. PMID 18046304. doi:10.1038/sj.npp.1301640 . 
  56. ^ Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, Magalhães PV, Amminger P, McGorry P, Malhi GS. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience and Biobehavioral Reviews. January 2011, 35 (3): 804–817. PMID 20934453. S2CID 11421586. doi:10.1016/j.neubiorev.2010.10.001. 
  57. ^ 57.0 57.1 57.2 Quiroz JA, Machado-Vieira R, Zarate CA, Manji HK. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology. 2010, 62 (1): 50–60. PMC 2889681 . PMID 20453535. doi:10.1159/000314310. 
  58. ^ Necus J, Sinha N, Smith FE, Thelwall PE, Flowers CJ, Taylor PN, Blamire AM, Cousins DA, Wang Y. White matter microstructural properties in bipolar disorder in relationship to the spatial distribution of lithium in the brain. Journal of Affective Disorders. June 2019, 253: 224–231. PMC 6609924 . PMID 31054448. doi:10.1016/j.jad.2019.04.075. 
  59. ^ Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs. February 2013, 27 (2): 135–153. PMID 23371914. S2CID 26907074. doi:10.1007/s40263-013-0039-0. hdl:11343/218106 . 
  60. ^ Abu-Hijleh FA, Prashar S, Joshi H, Sharma R, Frey BN, Mishra RK. Novel mechanism of action for the mood stabilizer lithium. Bipolar Disorders. February 2021, 23 (1): 76–83. PMID 33037686. S2CID 222257563. doi:10.1111/bdi.13019. 
  61. ^ Toledano E, Ogryzko V, Danchin A, Ladant D, Mechold U. 3'-5' phosphoadenosine phosphate is an inhibitor of PARP-1 and a potential mediator of the lithium-dependent inhibition of PARP-1 in vivo. The Biochemical Journal. April 2012, 443 (2): 485–490. PMC 3316155 . PMID 22240080. doi:10.1042/BJ20111057. 
  62. ^ Ghasemi M, Sadeghipour H, Mosleh A, Sadeghipour HR, Mani AR, Dehpour AR. Nitric oxide involvement in the antidepressant-like effects of acute lithium administration in the mouse forced swimming test. European Neuropsychopharmacology. May 2008, 18 (5): 323–332. PMID 17728109. S2CID 44805917. doi:10.1016/j.euroneuro.2007.07.011. 
  63. ^ Ghasemi M, Raza M, Dehpour AR. NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. Journal of Psychopharmacology. April 2010, 24 (4): 585–594. PMID 19351802. S2CID 41634565. doi:10.1177/0269881109104845. 
  64. ^ Mutz, Julian; Wong, Win Lee Edwin; Powell, Timothy R.; Young, Allan H.; Dawe, Gavin S.; Lewis, Cathryn M. The duration of lithium use and biological ageing: telomere length, frailty, metabolomic age and all-cause mortality. GeroScience. 2024-03-28, 46 (6): 5981–5994. doi:10.1007/s11357-024-01142-y. 
  65. ^ Araldi, E; Jutzeler, CR; Ristow, M. Lithium treatment extends human lifespan: findings from the UK Biobank.. Aging. 2023-01-11, 15 (2): 421–440. PMID 36640269. doi:10.18632/aging.204476.