数值线性代数 中,矩阵分裂 (matrix splitting )是一种将给定矩阵 表为多个矩阵和或差的表示。很多迭代法 (如解微分方程组 的)都依赖于直接求解比三对角矩阵 更一般的矩阵的方程,若将其分裂,通常可以更高效地求解。这项技术由Richard S. Varga(1960)发明。[ 1]
正则分裂
解矩阵方程
A
x
=
k
,
{\displaystyle \mathbf {A} \mathbf {x} =\mathbf {k} ,}
1
其中A 是给定n 阶非奇异方阵 ,k 是给定n 元列向量 。A 可分裂为
A
=
B
−
C
,
{\displaystyle \mathbf {A} =\mathbf {B} -\mathbf {C} ,}
2
B 、C 都是n 阶方阵。对元素非负的任意n 阶方阵M ,可以记作
M
≥
0
{\displaystyle \mathbf {M} \geq \mathbf {0} }
。若M 元素均为正数,可以记作
M
>
0
{\displaystyle \mathbf {M} >\mathbf {0} }
。相似地,若
M
1
−
M
2
{\displaystyle \mathbf {M} _{1}-\mathbf {M} _{2}}
的元素非负,可以记作
M
1
≥
M
2
{\displaystyle \mathbf {M} _{1}\geq \mathbf {M} _{2}}
。
定义: 若
B
−
1
≥
0
,
C
≥
0
{\displaystyle \mathbf {B} ^{-1}\geq 0,\ \mathbf {C} \geq \mathbf {0} }
,则
A
=
B
−
C
{\displaystyle \mathbf {A} =\mathbf {B} -\mathbf {C} }
是A的一个正则分裂 (regular splitting )。
假设矩阵方程形式为
B
x
=
g
,
{\displaystyle \mathbf {B} \mathbf {x} =\mathbf {g} ,}
3
其中g 是给定列向量,可直接求解x 。若(2 )表示A 的正则分裂,则迭代法
B
x
(
m
+
1
)
=
C
x
(
m
)
+
k
,
m
=
0
,
1
,
2
,
…
,
{\displaystyle \mathbf {B} \mathbf {x} ^{(m+1)}=\mathbf {C} \mathbf {x} ^{(m)}+\mathbf {k} ,\quad m=0,1,2,\ldots ,}
4
其中
x
(
0
)
{\displaystyle \mathbf {x} ^{(0)}}
是任意向量。(4 )可等价地改写为
x
(
m
+
1
)
=
B
−
1
C
x
(
m
)
+
B
−
1
k
,
m
=
0
,
1
,
2
,
…
{\displaystyle \mathbf {x} ^{(m+1)}=\mathbf {B} ^{-1}\mathbf {C} \mathbf {x} ^{(m)}+\mathbf {B} ^{-1}\mathbf {k} ,\quad m=0,1,2,\ldots }
5
若(2 )表示A 的正则分裂,则矩阵
D
=
B
−
1
C
{\displaystyle \mathbf {D} =\mathbf {B} ^{-1}\mathbf {C} }
的元素非负。[ 2]
可以证明,若
A
−
1
≥
0
{\displaystyle \mathbf {A} ^{-1}\geq \mathbf {0} }
,则
ρ
(
D
)
<
1
{\displaystyle \rho (\mathbf {D} )<1}
,其中
ρ
(
D
)
{\displaystyle \rho (\mathbf {D} )}
表示D 的谱半径 ,因此D 是收敛矩阵 。于是,迭代法(5 )必然收敛。[ 3] [ 4]
此外,若选择分裂(2 ),使B 是对角矩阵 (由于B 可逆,所以对角项全部不为零),则B 可在线性时间内求得逆(见时间复杂度 )。
矩阵迭代法
很多迭代法都可描述为矩阵分裂。若A 的对角项都是非零的,且A 表为矩阵和
A
=
D
−
U
−
L
,
{\displaystyle \mathbf {A} =\mathbf {D} -\mathbf {U} -\mathbf {L} ,}
6
其中D 是A 的主对角线元素构成的对角矩阵,U 、L 分别是n 阶严格上、下三角矩阵 ,则有:
雅可比法 可表为
x
(
m
+
1
)
=
D
−
1
(
U
+
L
)
x
(
m
)
+
D
−
1
k
.
{\displaystyle \mathbf {x} ^{(m+1)}=\mathbf {D} ^{-1}(\mathbf {U} +\mathbf {L} )\mathbf {x} ^{(m)}+\mathbf {D} ^{-1}\mathbf {k} .}
[ 5] [ 6] 7
高斯-赛德尔迭代 可表为
x
(
m
+
1
)
=
(
D
−
L
)
−
1
U
x
(
m
)
+
(
D
−
L
)
−
1
k
.
{\displaystyle \mathbf {x} ^{(m+1)}=(\mathbf {D} -\mathbf {L} )^{-1}\mathbf {U} \mathbf {x} ^{(m)}+(\mathbf {D} -\mathbf {L} )^{-1}\mathbf {k} .}
[ 7] [ 8] 8
逐次超松弛迭代法 可表为
x
(
m
+
1
)
=
(
D
−
ω
L
)
−
1
[
(
1
−
ω
)
D
+
ω
U
]
x
(
m
)
+
ω
(
D
−
ω
L
)
−
1
k
.
{\displaystyle \mathbf {x} ^{(m+1)}=(\mathbf {D} -\omega \mathbf {L} )^{-1}[(1-\omega )\mathbf {D} +\omega \mathbf {U} ]\mathbf {x} ^{(m)}+\omega (\mathbf {D} -\omega \mathbf {L} )^{-1}\mathbf {k} .}
[ 9] [ 10] 9
例子
正则分裂
方程(1 )中,令
A
=
(
6
−
2
−
3
−
1
4
−
2
−
3
−
1
5
)
,
k
=
(
5
−
12
10
)
.
{\displaystyle \mathbf {A} ={\begin{pmatrix}6&-2&-3\\-1&4&-2\\-3&-1&5\end{pmatrix}},\quad \mathbf {k} ={\begin{pmatrix}5\\-12\\10\end{pmatrix}}.}
10
应用雅可比中的分裂(7 ):将A 分裂,使B 包含A 的所有对角元素,C 包含A 的所有对角线外元素并取负(当然这不是将矩阵分裂为两矩阵的唯一有效方法),则有
B
=
(
6
0
0
0
4
0
0
0
5
)
,
C
=
(
0
2
3
1
0
2
3
1
0
)
,
{\displaystyle {\begin{aligned}&\mathbf {B} ={\begin{pmatrix}6&0&0\\0&4&0\\0&0&5\end{pmatrix}},\quad \mathbf {C} ={\begin{pmatrix}0&2&3\\1&0&2\\3&1&0\end{pmatrix}},\end{aligned}}}
11
A
−
1
=
1
47
(
18
13
16
11
21
15
13
12
22
)
,
B
−
1
=
(
1
6
0
0
0
1
4
0
0
0
1
5
)
,
{\displaystyle {\begin{aligned}&\mathbf {A^{-1}} ={\frac {1}{47}}{\begin{pmatrix}18&13&16\\11&21&15\\13&12&22\end{pmatrix}},\quad \mathbf {B^{-1}} ={\begin{pmatrix}{\frac {1}{6}}&0&0\\[4pt]0&{\frac {1}{4}}&0\\[4pt]0&0&{\frac {1}{5}}\end{pmatrix}},\end{aligned}}}
D
=
B
−
1
C
=
(
0
1
3
1
2
1
4
0
1
2
3
5
1
5
0
)
,
B
−
1
k
=
(
5
6
−
3
2
)
.
{\displaystyle {\begin{aligned}\mathbf {D} =\mathbf {B^{-1}C} ={\begin{pmatrix}0&{\frac {1}{3}}&{\frac {1}{2}}\\[4pt]{\frac {1}{4}}&0&{\frac {1}{2}}\\[4pt]{\frac {3}{5}}&{\frac {1}{5}}&0\end{pmatrix}},\quad \mathbf {B^{-1}k} ={\begin{pmatrix}{\frac {5}{6}}\\[4pt]-3\\[4pt]2\end{pmatrix}}.\end{aligned}}}
由于
B
−
1
≥
0
,
C
≥
0
{\displaystyle \mathbf {B} ^{-1}\geq \mathbf {0} ,\ \mathbf {C} \geq \mathbf {0} }
,分裂(11 )是正则分裂。由于
A
−
1
>
0
{\displaystyle \mathbf {A} ^{-1}>\mathbf {0} }
,谱半径
ρ
(
D
)
<
1
{\displaystyle \rho (\mathbf {D} )<1}
(D 的近似特征值 是
λ
i
≈
−
0.4599820
,
−
0.3397859
,
0.7997679
{\displaystyle \lambda _{i}\approx -0.4599820,-0.3397859,0.7997679}
)。因此D 收敛,迭代法(5 )对(10 )收敛。注意A 的对角元均大于零,非对角元均小于零,且A 是强对角占优矩阵 。[ 11]
迭代法(5 )应用于(10 ),形式为
x
(
m
+
1
)
=
(
0
1
3
1
2
1
4
0
1
2
3
5
1
5
0
)
x
(
m
)
+
(
5
6
−
3
2
)
,
m
=
0
,
1
,
2
,
…
{\displaystyle \mathbf {x} ^{(m+1)}={\begin{pmatrix}0&{\frac {1}{3}}&{\frac {1}{2}}\\[4pt]{\frac {1}{4}}&0&{\frac {1}{2}}\\[4pt]{\frac {3}{5}}&{\frac {1}{5}}&0\end{pmatrix}}\mathbf {x} ^{(m)}+{\begin{pmatrix}{\frac {5}{6}}\\[4pt]-3\\[4pt]2\end{pmatrix}},\quad m=0,1,2,\ldots }
12
(12 )的精确解为
x
=
(
2
−
1
3
)
.
{\displaystyle \mathbf {x} ={\begin{pmatrix}2\\-1\\3\end{pmatrix}}.}
13
以
x
(
0
)
=
(
0.0
,
0.0
,
0.0
)
T
{\displaystyle \mathbf {x} ^{(0)}=(0.0,\ 0.0,\ 0.0)^{T}}
为初向量,列出(12 )的前几次迭代。可见此方法明显收敛到解(13 ),不过速度相当缓慢。
x
1
(
m
)
{\displaystyle x_{1}^{(m)}}
x
2
(
m
)
{\displaystyle x_{2}^{(m)}}
x
3
(
m
)
{\displaystyle x_{3}^{(m)}}
0.0
0.0
0.0
0.83333
-3.0000
2.0000
0.83333
-1.7917
1.9000
1.1861
-1.8417
2.1417
1.2903
-1.6326
2.3433
1.4608
-1.5058
2.4477
1.5553
-1.4110
2.5753
1.6507
-1.3235
2.6510
1.7177
-1.2618
2.7257
1.7756
-1.2077
2.7783
1.8199
-1.1670
2.8238
雅可比法
雅可比法(7 )与上面演示的正则分裂(11 )相同。
高斯-赛德尔法
由于(10 )中矩阵A 的对角项均非零,可以用分裂(6 )表示A ,其中
D
=
(
6
0
0
0
4
0
0
0
5
)
,
U
=
(
0
2
3
0
0
2
0
0
0
)
,
L
=
(
0
0
0
1
0
0
3
1
0
)
.
{\displaystyle \mathbf {D} ={\begin{pmatrix}6&0&0\\0&4&0\\0&0&5\end{pmatrix}},\quad \mathbf {U} ={\begin{pmatrix}0&2&3\\0&0&2\\0&0&0\end{pmatrix}},\quad \mathbf {L} ={\begin{pmatrix}0&0&0\\1&0&0\\3&1&0\end{pmatrix}}.}
14
则有
(
D
−
L
)
−
1
=
1
120
(
20
0
0
5
30
0
13
6
24
)
,
{\displaystyle {\begin{aligned}&\mathbf {(D-L)^{-1}} ={\frac {1}{120}}{\begin{pmatrix}20&0&0\\5&30&0\\13&6&24\end{pmatrix}},\end{aligned}}}
(
D
−
L
)
−
1
U
=
1
120
(
0
40
60
0
10
75
0
26
51
)
,
(
D
−
L
)
−
1
k
=
1
120
(
100
−
335
233
)
.
{\displaystyle {\begin{aligned}&\mathbf {(D-L)^{-1}U} ={\frac {1}{120}}{\begin{pmatrix}0&40&60\\0&10&75\\0&26&51\end{pmatrix}},\quad \mathbf {(D-L)^{-1}k} ={\frac {1}{120}}{\begin{pmatrix}100\\-335\\233\end{pmatrix}}.\end{aligned}}}
将高斯-赛德尔法(8 )应用于(10 )有如下格式
x
(
m
+
1
)
=
1
120
(
0
40
60
0
10
75
0
26
51
)
x
(
m
)
+
1
120
(
100
−
335
233
)
,
m
=
0
,
1
,
2
,
…
{\displaystyle \mathbf {x} ^{(m+1)}={\frac {1}{120}}{\begin{pmatrix}0&40&60\\0&10&75\\0&26&51\end{pmatrix}}\mathbf {x} ^{(m)}+{\frac {1}{120}}{\begin{pmatrix}100\\-335\\233\end{pmatrix}},\quad m=0,1,2,\ldots }
15
以
x
(
0
)
=
(
0.0
,
0.0
,
0.0
)
T
{\displaystyle \mathbf {x} ^{(0)}=(0.0,\ 0.0,\ 0.0)^{T}}
为初向量,列出(15 )的前几次迭代。可见方法明显收敛到解(13 ),且比雅可比法快。
x
1
(
m
)
{\displaystyle x_{1}^{(m)}}
x
2
(
m
)
{\displaystyle x_{2}^{(m)}}
x
3
(
m
)
{\displaystyle x_{3}^{(m)}}
0.0
0.0
0.0
0.8333
-2.7917
1.9417
0.8736
-1.8107
2.1620
1.3108
-1.5913
2.4682
1.5370
-1.3817
2.6459
1.6957
-1.2531
2.7668
1.7990
-1.1668
2.8461
1.8675
-1.1101
2.8985
1.9126
-1.0726
2.9330
1.9423
-1.0479
2.9558
1.9619
-1.0316
2.9708
逐次超松弛迭代法
置
ω
=
1.1
{\displaystyle \omega =1.1}
。由分裂(14 ),有
(
D
−
ω
L
)
−
1
=
1
12
(
2
0
0
0.55
3
0
1.441
0.66
2.4
)
,
{\displaystyle {\begin{aligned}&\mathbf {(D-\omega L)^{-1}} ={\frac {1}{12}}{\begin{pmatrix}2&0&0\\0.55&3&0\\1.441&0.66&2.4\end{pmatrix}},\end{aligned}}}
(
D
−
ω
L
)
−
1
[
(
1
−
ω
)
D
+
ω
U
]
=
1
12
(
−
1.2
4.4
6.6
−
0.33
0.01
8.415
−
0.8646
2.9062
5.0073
)
,
{\displaystyle {\begin{aligned}&\mathbf {(D-\omega L)^{-1}[(1-\omega )D+\omega U]} ={\frac {1}{12}}{\begin{pmatrix}-1.2&4.4&6.6\\-0.33&0.01&8.415\\-0.8646&2.9062&5.0073\end{pmatrix}},\end{aligned}}}
ω
(
D
−
ω
L
)
−
1
k
=
1
12
(
11
−
36.575
25.6135
)
.
{\displaystyle {\begin{aligned}&\mathbf {\omega (D-\omega L)^{-1}k} ={\frac {1}{12}}{\begin{pmatrix}11\\-36.575\\25.6135\end{pmatrix}}.\end{aligned}}}
将SOR法(9 )应用于(10 ),则有
x
(
m
+
1
)
=
1
12
(
−
1.2
4.4
6.6
−
0.33
0.01
8.415
−
0.8646
2.9062
5.0073
)
x
(
m
)
+
1
12
(
11
−
36.575
25.6135
)
,
m
=
0
,
1
,
2
,
…
{\displaystyle \mathbf {x} ^{(m+1)}={\frac {1}{12}}{\begin{pmatrix}-1.2&4.4&6.6\\-0.33&0.01&8.415\\-0.8646&2.9062&5.0073\end{pmatrix}}\mathbf {x} ^{(m)}+{\frac {1}{12}}{\begin{pmatrix}11\\-36.575\\25.6135\end{pmatrix}},\quad m=0,1,2,\ldots }
16
以
x
(
0
)
=
(
0.0
,
0.0
,
0.0
)
T
{\displaystyle \mathbf {x} ^{(0)}=(0.0,\ 0.0,\ 0.0)^{T}}
为初向量,列出(16 )的前几次迭代。可见SOR法收敛到解(13 ),比GS法略快。
x
1
(
m
)
{\displaystyle x_{1}^{(m)}}
x
2
(
m
)
{\displaystyle x_{2}^{(m)}}
x
3
(
m
)
{\displaystyle x_{3}^{(m)}}
0.0
0.0
0.0
0.9167
-3.0479
2.1345
0.8814
-1.5788
2.2209
1.4711
-1.5161
2.6153
1.6521
-1.2557
2.7526
1.8050
-1.1641
2.8599
1.8823
-1.0930
2.9158
1.9314
-1.0559
2.9508
1.9593
-1.0327
2.9709
1.9761
-1.0185
2.9829
1.9862
-1.0113
2.9901
另见
注释
参考文献
Burden, Richard L.; Faires, J. Douglas, Numerical Analysis 5th, Boston: Prindle, Weber and Schmidt , 1993, ISBN 0-534-93219-3 .
Varga, Richard S. Factorization and Normalized Iterative Methods. Langer, Rudolph E. (编). Boundary Problems in Differential Equations. Madison: University of Wisconsin Press . 1960: 121–142. LCCN 60-60003 .
Varga, Richard S., Matrix Iterative Analysis, New Jersey: Prentice-Hall , 1962, LCCN 62-21277 .