实数值语义
无穷多值武卡谢维奇逻辑是实数值逻辑 ,其中来自命题演算 的句子被指派上在 0 到 1 之间的任意精度的真值 。求值有如下递归定义:
w
(
θ
→
ϕ
)
=
F
→
(
θ
,
ϕ
)
{\displaystyle w(\theta \rightarrow \phi )=F_{\rightarrow }(\theta ,\phi )}
w
(
¬
θ
)
=
F
¬
(
θ
)
{\displaystyle w(\neg \theta )=F_{\neg }(\theta )}
w
(
θ
∧
ϕ
)
=
F
∧
(
θ
,
ϕ
)
{\displaystyle w(\theta \wedge \phi )=F_{\wedge }(\theta ,\phi )}
w
(
θ
∨
ϕ
)
=
F
∨
(
θ
,
ϕ
)
{\displaystyle w(\theta \vee \phi )=F_{\vee }(\theta ,\phi )}
F
∧
{\displaystyle F_{\wedge }}
,
F
∨
{\displaystyle F_{\vee }}
,
F
¬
{\displaystyle F_{\neg }}
和
F
→
{\displaystyle F_{\rightarrow }}
的值明确给出自:
F
∧
(
x
,
y
)
=
M
a
x
{
0
,
x
+
y
−
1
}
{\displaystyle F_{\wedge }(x,y)=Max\{0,x+y-1\}}
F
∨
(
x
,
y
)
=
M
i
n
{
1
,
x
+
y
}
{\displaystyle F_{\vee }(x,y)=Min\{1,x+y\}}
F
¬
(
x
)
=
1
−
x
{\displaystyle F_{\neg }(x)=1-x}
F
→
(
x
,
y
)
=
M
i
n
{
1
,
1
−
x
+
y
}
{\displaystyle F_{\rightarrow }(x,y)=Min\{1,1-x+y\}}
求值的性质
在这个定义下,求值满足如下条件:
F
∧
{\displaystyle F_{\wedge }}
和
F
∨
{\displaystyle F_{\vee }}
满足
F
∧
(
0
,
0
)
=
F
∧
(
0
,
1
)
=
F
∧
(
1
,
0
)
=
0
{\displaystyle F_{\wedge }(0,0)=F_{\wedge }(0,1)=F_{\wedge }(1,0)=0}
和
F
∧
(
1
,
1
)
=
1
{\displaystyle F_{\wedge }(1,1)=1}
。
F
∨
(
0
,
0
)
=
0
{\displaystyle F_{\vee }(0,0)=0}
和
F
∨
(
0
,
1
)
=
F
∨
(
1
,
0
)
=
F
∨
(
1
,
1
)
=
1
{\displaystyle F_{\vee }(0,1)=F_{\vee }(1,0)=F_{\vee }(1,1)=1}
。
F
∧
{\displaystyle F_{\wedge }}
和
F
∨
{\displaystyle F_{\vee }}
是连续性 的。
F
∧
{\displaystyle F_{\wedge }}
和
F
∨
{\displaystyle F_{\vee }}
在每个构成上是严格递增的。
F
∧
{\displaystyle F_{\wedge }}
和
F
∨
{\displaystyle F_{\vee }}
在如下意义上是结合性的:
F
(
a
,
F
(
b
,
c
)
)
=
F
(
F
(
a
,
b
)
,
c
)
{\displaystyle F(a,F(b,c))=F(F(a,b),c)}
对于每个
F
∈
{
F
∧
,
F
∨
}
{\displaystyle F\in \{F_{\wedge },F_{\vee }\}}
。
所以
F
∧
{\displaystyle F_{\wedge }}
和
F
∨
{\displaystyle F_{\vee }}
都是连续t-规范 的。
F
¬
(
0
)
=
1
{\displaystyle F_{\neg }(0)=1}
和
F
¬
(
1
)
=
0
{\displaystyle F_{\neg }(1)=0}
。
F
¬
{\displaystyle F_{\neg }}
是连续的。
引用
^ Łukasiewicz J., 1920, O logice trojwartosciowej (Polish, On three-valued logic). Ruch filozoficzny 5 :170–171.
^ Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28 :77–86.
^ Hájek P., 1998, Metamathematics of Fuzzy Logic . Dordrecht: Kluwer.
^ Ono, H., 2003, "Substructural logics and residuated lattices — an introduction". In F.V. Hendricks, J. Malinowski (eds.): Trends in Logic: 50 Years of Studia Logica, Trends in Logic 20 : 177–212.