格尔丰德-施奈德定理

定理

格尔丰德-施奈德定理(英語:Gelfond–Schneider theorem)是一个可以用于证明许多数的超越性的结果。这个定理由苏联数学家亚历山大·格尔丰德英语Alexander Gelfond和德国数学家西奧多·施耐德在1934年分别独立证明,它解決了希尔伯特第七问题

表述

如果  代数数,其中 ,且 不是有理数,那么任何 的值一定是超越数

评论

  •    不限于实数,也可以是虚部不为零的复数。因此, 可以是多值的,其中“log”表示复数对数,且该定理对每个值都是成立的。
  • 该定理的一个等价的表述是:如果    是非零的代数数,那么   要么是有理数,要么是超越数。
使用反證法。
 
假設   不為超越數,也不為有理數,即為代數數
根據此定理,  為超越數
  卻是代數數,矛盾。
  要么是有理数,要么是超越数。
  • 如果没有    是代数数的限制,这个定理未必成立。例如:
    •   為超越數(由本定理可得知),  為代數數,則
 ,是代數數。
    •   為代數數,  為超越數,則
 ,是代数数。

定理的应用

利用这个定理,立刻就可以推出以下实数的超越性:

 

  •  

参见

参考文献