志留纪—泥盆纪陆地革命

志留纪—泥盆纪陆地革命英語Silurian-Devonian Terrestrial Revolution),也称泥盆纪植物爆发Devonian Plant Explosion,简称DePE[1]泥盆纪大爆发Devonian explosion),是显生宙古生代中期有胚植物(特别是维管植物)和真菌开始在陆地上出现快速定殖多样化辐射的时期,发生在距今4.28至3.59亿年前的志留纪泥盆纪期间[2][3][4],其中最关键的阶段发生在两纪之交[5]。这个时期的植物相主要是通过孢子繁殖的蕨类植物,与现今主流的被子植物无论在外形、结构和繁殖策略上都有很大不同,而且大多在后来的泥盆纪后期灭绝事件石炭纪雨林崩溃事件二叠纪末大灭绝灭绝事件消亡[6][7],其生态位大多被后出现的种子植物裸子植物和被子植物)所取代。

泥盆纪沼泽的艺术想象画,源自《The World Before the Deluge》(1872)一书

陆生自营生物的出现和不断繁盛对地球表面的自然环境产生了很大的冲击,特别是通过不断光合作用改变了地球大气层的成分,使得氧气浓度首次超过了10%。陆生植物日渐强健的根系也不断侵蚀岩石层,所产生的细砂与各种有机物碎屑混合后形成了土壤,最终在地壳上形成了可以保水并且富含腐殖质土壤层,为之后动物的登陆演化创造了栖息条件[8]。植物对地表风化作用的加速,也显著影响了地球的水圈(特别是淡水),使得大量矿物质被从岩石中释放并随着地表径流进入水体,最终也逐渐提高了海洋盐度。植物叶部蒸腾作用产生的水蒸气也影响了水循环,加上固碳移除二氧化碳降低了温室效应,使得全球气候受到影响,部分造成了晚古生代大冰期

陆地生命

最先登陆并定殖陆地的复杂生物其实是真菌,其中一些与绿藻蓝绿菌发生共生演化成了早期的地衣,另一些(特别是球囊菌)甚至发展成了直径达1米(3.3英尺)、高度则可达8.8米(29英尺)的原杉菌Prototaxites),是当时陆地上最大的生物,直到石炭纪早期才在尺寸上被植物超过。植物很可能沿着并利用真菌的菌丝扩展根系形成了共生的菌根,并且在植物根际之间的土壤内形成了可以交换养分菌根网络[9]。最早由真菌与维管植物共生产生的菌根化石出现于泥盆纪早期[10]

最早可以在陆地环境存活的绿色质体生物植物绿藻的共同祖先)很可能在奥陶纪就已出现[11]。最早登陆的有胚植物非维管苔藓植物,出现在4.7亿年前的奥陶纪中后期[12][13][14],其中在波罗的大陆达瑞威尔期就已经存在了颇具多样性的植物群[15]汞同位素调查(∆199Hg和∆200Hg)发现陆生植物在志留纪早期就已经扩散至陆地上很大区域[16]。在侯默期冰期早古生代大冰期英语Early Paleozoic Icehouse的一部分)结束后出现了一个间冰期暖化,三缝孢的植物也首次出现了大规模的多样化事件,但之后在卢德福德期中期又再次因冰期出现大规模海退,在引发劳阶灭绝事件的同时也让出大量新暴露的陆地供植物和蓝绿菌菌毯定殖,使得多孢植物开始繁盛[17]并在之后普里道利世的温暖期开始进一步多样化[18]。最早的维管植物化石以孢子体的形态出现在文洛克世[19],而最早的石松门物种——巴氏石松Baragwanathia)出现在随后的罗德洛世[20][21]孢粉学证据表明志留纪的陆生植物一致性很强,而不向现代植物那样会因为区域不同而呈现物种多样性[22]。志留纪的植物多样化得到了瑞亚克洋中数个快速变化的小型火山岛相助,其环境多变性使得演化得以加速[23],但当时的植物尺寸很小,其中一个物种(Tichavekia grandis)达到13厘米(5.1英寸)的高度已经算作巨型植物[24]

泥盆纪的地表则出现了广泛绿化[25],许多现代维管植物的演化支都出现在这个时期。真叶植物基群出现在泥盆纪早期的化石中[26],而石松也首次出现了演化辐射[11]。和志留纪一样,泥盆纪早期的植物群落无论地处哪里都十分相似[27],只有极少数具有特有性.[28]。真叶植物的多样性在泥盆纪中期继续增加[29],高度超过8米(26英尺)的真正意义上的树林也首次出现[30],最早的森林化石出现在艾菲尔期[31],最古老的树木是枝蕨纲[32]。泥盆纪的树沼森林主要充斥着巨型木贼真蕨类羊齿植物和可以长到40米(130英尺)高的鳞木科石松[6],而种子蕨前裸子植物也在这段时期兴盛[33][34],其中古蕨属发展出了复杂的根系系统,可以应对干燥环境[35]。因为蕨类植物和前裸子植物的迅速辐射,植物在泥盆纪晚期的多样化最为迅速[36],而枝蕨纲继续成为森林生态系统的主力.[32]。在泥盆纪末期,真正意义上的种子植物开始出现[37]。与现代植物外形相似的泥盆纪植物是真蕨类),虽然其中许多物种被怀疑是附生植物。真正的裸子植物(银杏苏铁)则是在石炭纪才真正出现[6]

各植物之间为了争夺单位面积内总量有限的日光照射、土壤养分和生长空间,其表型的多样性在志留纪和泥盆纪期间增加的幅度不亚于动物在寒武纪大爆发中的程度[38]。这期间维管植物因为演化出了木质素更能纵向生长,使得高耸茂密的树冠开始成为常态,并在之后的石炭纪形成了广袤的煤炭森林湿地植被在地表上产生的遮掩也为各类陆生动物(主要是六足类蛛形类多足类节肢动物真肺类腹足纲软体动物四足类脊椎动物寡毛类环节动物)提供了庇护环境,同时创造了植食这一种新的觅食策略。植物和动物之间的互动使其共同演化出了各种反捕适应共生关系[39],其中一些新演化出的裸子植物甚至开始依赖动物(主要是昆虫)协助其授粉和传播种子

对大气、气候和土壤的影响

根系更深的维管植物对土壤大气海洋中的氧气含量都造成了深远影响,因此诞生了用来解释生物地质形态变化的“泥盆纪植物假说”(Devonian Plant Hypothesis)[8]。泥盆纪的陆生植物扩张改变了土壤成分,并增加了硅酸盐的风化[40][41]。因为陆地植物所受的日光照射更充足,光合固碳使得大气中的二氧化碳含量从6300 ppmv降至2100 ppmv。虽然植被可以明显减少了陆地的日光反照率,但当时分解木质食碎屑动物微生物尚未演化成熟,这使得大量碳元素被转换为截存在淤泥河岩层中而不是回归碳循环,因此大大降低了温室效应[42]。这加上当时冈瓦纳大陆构造抬升暴露出的玄武岩也会吸收大量二氧化碳[43],引发了泥盆纪晚期开始的晚古生代大冰期[44][45][46]。但学术界也有另外的假说认为陆地植物的演化其实会减少硅酸盐风化[47]

泥盆纪植物兴盛的另一个结果是大气层中的氧气含量剧增,使其在氧气地质历史上首次上升超过大气成分的10%(现今水平的一半),是地球第三次大规模的氧化事件[42](前两次分别是太古宙末期因蓝绿菌产氧引发的大氧化事件、以及元古宙后期因质体藻类繁盛导致的新元古代氧化事件)。伴随氧气一同剧增的是野火的频率[48],而地球的氧气浓度在普里道利世首次达到了可以产生林火的水平,在化石证据中留下了最早的木炭痕迹[49],但泥盆纪早期和中期的大部分时期大气层的含氧量还不足以引发频繁的火灾[50]。到了法门期晚期,大规模野火已经是常见现象[51][52]

陆生植物的繁盛使得内陆水体中的细砂沉积物淤泥)总量剧增,这些沉积物在冲积平原的积累造成了河流曲流交织的复杂度,并形成了大量湿地池塘湖泊以及经常被洪涝河岸带林地,这使得各类节肢动物(包括水生和陆生)、淡水软体动物(包括淡水螺贝类)、淡水鱼食虫四足动物都得到了更丰富的栖息条件[53]

泥盆纪的植物爆发所造成的风化加速在全球范围造成了淡水水体和海洋的富养化也加速了沉积物的循环,很可能造成海洋低氧现象也引发了泥盆纪末大灭绝[54][55][56]。植物根系对岩石的侵蚀释放出了大量矿物质(特别是磷酸盐),而这些矿物质和土壤中的腐殖质降水大量冲刷到地表水体中后会造成养分污染,很可能会引发大范围的藻华,从而使得当地水体缺氧[57]。这种水体缺氧对水生动物——特别是体型较大的自游动物(比如当时处于霸权生态位的盾皮鱼)——尤其致命,其造成的极端选择压力也使得淡水生态系统中的一部分四足形类肉鳍鱼因为愈加依赖用与鱼鳔同源的原始呼吸空气而向着陆生方向演化,最终在之后的石炭纪成为了四足动物并在二叠纪演化出了彻底摆脱水生的羊膜动物

陆地植物物质在沼泽中沉积的增加也可以解释泥盆纪岩层煤矿沼气石油的产生[6]

另见

参考

  1. ^ Pawlik, Łukasz; Buma, Brian; Šamonil, Pavel; Kvaček, Jiří; Gałązka, Anna; Kohout, Petr; Malik, Ireneusz. Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth's system properties - A critical review. Earth-Science Reviews. June 2020, 205: 103200. Bibcode:2020ESRv..20503200P. S2CID 218933989. doi:10.1016/j.earscirev.2020.103200 . hdl:20.500.12128/14041 . 
  2. ^ Capel, Elliot; Cleal, Christopher J.; Xue, Jinzhuang; Monnet, Claude; Servais, Thomas; Cascales-Miñana, Borja. The Silurian–Devonian terrestrial revolution: Diversity patterns and sampling bias of the vascular plant macrofossil record. Earth-Science Reviews. August 2022, 231: 104085. Bibcode:2022ESRv..23104085C. doi:10.1016/j.earscirev.2022.104085 . hdl:20.500.12210/76731 . 
  3. ^ Xue, Jinzhuang; Huang, Pu; Wang, Deming; Xiong, Conghui; Liu, Le; Basinger, James F. Silurian-Devonian terrestrial revolution in South China: Taxonomy, diversity, and character evolution of vascular plants in a paleogeographically isolated, low-latitude region. Earth-Science Reviews. May 2018, 180: 92–125 [8 November 2022]. Bibcode:2018ESRv..180...92X. doi:10.1016/j.earscirev.2018.03.004. 
  4. ^ Capel, Elliot; Cleal, Christopher J.; Gerrienne, P.; Servais, Thomas; Cascales-Miñana, Borja. A factor analysis approach to modelling the early diversification of terrestrial vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology. 15 March 2021, 566: 110170 [8 November 2022]. Bibcode:2021PPP...56610170C. S2CID 230591548. doi:10.1016/j.palaeo.2020.110170. hdl:20.500.12210/55336 . 
  5. ^ Hao, Shougang; Xue, Jinzhuang; Liu, Zhenfeng; Wang, Deming. Zosterophyllum Penhallow around the Silurian-Devonian Boundary of Northeastern Yunnan, China. International Journal of Plant Sciences. May 2007, 168 (4): 477–489 [12 November 2022]. S2CID 83631931. doi:10.1086/511011. 
  6. ^ 6.0 6.1 6.2 6.3 Cruzan, Mitchell. Evolutionary Biology A Plant Perspective. New York: Oxford University Press. 2018: 37–39. ISBN 978-0-19-088267-9. 
  7. ^ Cascales-Miñana, B.; Cleal, C. J. Plant fossil record and survival analyses. Lethaia. 2011, 45: 71–82. doi:10.1111/j.1502-3931.2011.00262.x. 
  8. ^ 8.0 8.1 Pawlik, Łukasz; Buma, Brian; Šamonil, Pavel; Kvaček, Jiří; Gałązka, Anna; Kohout, Petr; Malik, Ireneusz. Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth's system properties - A critical review. Earth-Science Reviews. June 2020, 205: 103200. Bibcode:2020ESRv..20503200P. doi:10.1016/j.earscirev.2020.103200 . hdl:20.500.12128/14041  (英语). 
  9. ^ Retallack, Gregory J. Ordovician-Devonian lichen canopies before evolution of woody trees. Gondwana Research. June 2022, 106: 211–223 [22 November 2022]. Bibcode:2022GondR.106..211R. S2CID 246320087. doi:10.1016/j.gr.2022.01.010. 
  10. ^ Lutzoni, François; Nowak, Michael D.; Alfaro, Michael E.; Reeb, Valérie; Miadlikowska, Jolanta; Krug, Michael; Arnold, A. Elizabeth; Lewis, Louise A.; Swofford, David L.; Hibbett, David; Hilu, Khidir; James, Timothy Y.; Quandt, Dietmar; Magallón, Susana. Contemporaneous radiations of fungi and plants linked to symbiosis. Nature Communications. 21 December 2018, 9 (1): 5451. Bibcode:2018NatCo...9.5451L. PMC 6303338 . PMID 30575731. doi:10.1038/s41467-018-07849-9 . 
  11. ^ 11.0 11.1 Feng, Zhuo. Late Palaeozoic plants. Current Biology. 11 September 2017, 27 (17): R905–R909. PMID 28898663. doi:10.1016/j.cub.2017.07.041 . 
  12. ^ Lenton, Timothy M.; Crouch, Michael; Johnson, Martin; Pires, Nuno; Dolan, Liam. First plants cooled the Ordovician. Nature Geoscience. 1 February 2012, 5 (2): 86–89 [18 October 2022]. Bibcode:2012NatGe...5...86L. ISSN 1752-0908. doi:10.1038/ngeo1390 (英语). 
  13. ^ Adiatma, Y. Datu; Saltzman, Matthew R.; Young, Seth A.; Griffith, Elizabeth M.; Kozik, Nevin P.; Edwards, Cole T.; Leslie, Stephen A.; Bancroft, Alyssa M. Did early land plants produce a stepwise change in atmospheric oxygen during the Late Ordovician (Sandbian ~458 Ma)?. Palaeogeography, Palaeoclimatology, Palaeoecology. 15 November 2019, 534: 109341. Bibcode:2019PPP...53409341A. S2CID 201309297. doi:10.1016/j.palaeo.2019.109341  (英语). 
  14. ^ Quinton, Page C.; Rygel, Michael C.; Heins, Megan. Sequence stratigraphy and carbon isotopes from the Trenton and Black River Groups near Union Furnace, PA: Constraining the role of land plants in the Ordovician world. Palaeogeography, Palaeoclimatology, Palaeoecology. 15 July 2017, 574: 110440 [17 October 2023]. ISSN 0031-0182. S2CID 235577811. doi:10.1016/j.palaeo.2021.110440. 
  15. ^ Rubinstein, Claudia V.; Vajda, Vivi. Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden. Geologiska Föreningens Förhandlingar. 24 July 2019, 141 (3): 181–190. Bibcode:2019GFF...141..181R. ISSN 1103-5897. doi:10.1080/11035897.2019.1636860 . hdl:11336/124409  (英语). 
  16. ^ Yuan, Wei; Liu, Mu; Chen, Daizhao; Xing, Yao-Wu; Spicer, Robert A.; Chen, Jitao; Them, Theodore R.; Wang, Xun; Li, Shizhen; Guo, Chuan; Zhang, Gongjing; Zhang, Liyu; Zhang, Hui; Feng, Xinbin. Mercury isotopes show vascular plants had colonized land extensively by the early Silurian. Science Advances. 28 April 2023, 9 (17): eade9510. Bibcode:2023SciA....9E9510Y. ISSN 2375-2548. PMC 10146902 . PMID 37115923. doi:10.1126/sciadv.ade9510 (英语). 
  17. ^ Pšenička, Josef; Bek, Jiří; Frýda, Jiří; Žárský, Viktor; Uhlířová, Monika; Štorch, Petr. Dynamics of Silurian Plants as Response to Climate Changes. Life. 31 August 2022, 11 (9): 906. PMC 8470493 . PMID 34575055. doi:10.3390/life11090906 . 
  18. ^ Bek, Jiří; Štorch, Petr; Tonarová, Petra; Libertín, Milan. Early Silurian (mid-Sheinwoodian) palynomorphs from the Loděnice-Špičatý vrch, Prague Basin, Czech Republic.. Bulletin of Geosciences. 2022, 97 (3): 385–396. S2CID 252148763. doi:10.3140/bull.geosci.1831 . 
  19. ^ Libertín, Milan; Kvaček, Jiří; Bek, Jiří; Žárský, Viktor; Štorch, Petr. Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. Nature Plants. 30 April 2018, 4 (5): 269–271 [9 November 2022]. PMID 29725100. S2CID 256679794. doi:10.1038/s41477-018-0140-y. 
  20. ^ Rickards, R. B. The age of the earliest club mosses: the Silurian Baragwanathia flora in Victoria, Australia. Geological Magazine. 1 March 2000, 137 (2): 207–209 [11 November 2022]. Bibcode:2000GeoM..137..207R. S2CID 131287538. doi:10.1017/S0016756800003800. 
  21. ^ Kraft, Petr; Kvaček, Zlatko. Where the lycophytes come from? – A piece of the story from the Silurian of peri-Gondwana. Gondwana Research. May 2017, 45: 180–190 [16 June 2024]. doi:10.1016/j.gr.2017.02.001 –通过Elsevier Science Direct (英语). 
  22. ^ Césari, Silvia N.; Marenssi, Sergio; Limarino, Carlos O.; Ciccioli, Patricia L.; Bello, Fanny C.; Ferreira, Luis C.; Scarlatta, Leonardo R. The first upper Silurian land-derived palynological assemblage from South America: Depositional environment and stratigraphic significance. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 December 2020, 559: 109970 [11 November 2022]. Bibcode:2020PPP...55909970C. S2CID 225020262. doi:10.1016/j.palaeo.2020.109970. 
  23. ^ Kraft, Petr; Pšenička, Josef; Sakala, Jakub; Frýda, Jiří. Initial plant diversification and dispersal event in upper Silurian of the Prague Basin. Palaeogeography, Palaeoclimatology, Palaeoecology. 15 January 2019, 514: 144–155 [9 November 2022]. Bibcode:2019PPP...514..144K. S2CID 133777180. doi:10.1016/j.palaeo.2018.09.034. 
  24. ^ Uhlířová, Monika; Pšenička, Josef; Sakala, Jakub; Bek, Jiří. A study of the large Silurian land plant Tichavekia grandis Pšenička et al. from the Požáry Formation (Czech Republic). Review of Palaeobotany and Palynology. March 2022, 298: 104587 [11 November 2022]. Bibcode:2022RPaPa.29804587U. S2CID 245295312. doi:10.1016/j.revpalbo.2021.104587. 
  25. ^ Shen, Zhen; Monnet, Claude; Cascales-Miñana, Borja; Gong, Yiming; Dong, Xianghong; Kroeck, David M.; Servais, Thomas. Diversity dynamics of Devonian terrestrial palynofloras from China: Regional and global significance. Earth-Science Reviews. January 2020, 200: 102967 [22 November 2022]. Bibcode:2020ESRv..20002967S. S2CID 210618841. doi:10.1016/j.earscirev.2019.102967. hdl:20.500.12210/34284 . 
  26. ^ Xu, Hong-He; Wang, Yi; Tang, Peng; Fu, Qiang; Wang, Yao. Discovery of Lower Devonian plants from Jiangxi, South China and the pattern of Devonian transgression after the Kwangsian Orogeny in the Cathaysia Block. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 October 2019, 531: 108982 [12 November 2022]. Bibcode:2019PPP...53108982X. S2CID 133712540. doi:10.1016/j.palaeo.2018.11.007. 
  27. ^ Xu, Hong-He; Yang, Ning; Bai, Jiao; Wang, Yao; Liu, Feng; Ouyang, Shu. Palynological assemblage of the Lower Devonian of Hezhang, Guizhou, southwestern China. Review of Palaeobotany and Palynology. 1 February 2022, 297: 104561 [25 November 2023]. Bibcode:2022RPaPa.29704561X. ISSN 0034-6667. S2CID 244048051. doi:10.1016/j.revpalbo.2021.104561. 
  28. ^ Cascales-Miñana, Borja; Meyer-Berthaud, Brigitte. Diversity patterns of the vascular plant group Zosterophyllopsida in relation to Devonian paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 April 2015, 423: 53–61 [20 May 2024]. doi:10.1016/j.palaeo.2015.01.024 –通过Elsevier Science Direct (英语). 
  29. ^ Toledo, Selin; Bippus, Alexander C.; Atkinson, Brian A.; Bronson, Allison W.; Tomescu, Alexandru M. F. Taxon sampling and alternative hypotheses of relationships in the euphyllophyte plexus that gave rise to seed plants: insights from an Early Devonian radiatopsid. New Phytologist. 25 May 2021, 232 (2): 914–927. PMID 34031894. S2CID 235199240. doi:10.1111/nph.17511 . 
  30. ^ Hibbett, David; Blanchette, Robert; Kenrick, Paul; Mills, Benjamin. Climate, decay, and the death of the coal forests. Current Biology. 11 July 2016, 26 (13): R563–R567. PMID 27404250. doi:10.1016/j.cub.2016.01.014 . 
  31. ^ Davies, Neil S.; McMahon, William J.; Berry, Christopher M. Earth's earliest forest: fossilized trees and vegetation-induced sedimentary structures from the Middle Devonian (Eifelian) Hangman Sandstone Formation, Somerset and Devon, SW England. Journal of the Geological Society. 23 February 2024 [25 February 2024]. ISSN 0016-7649. doi:10.1144/jgs2023-204  –通过GeoScienceWorld (英语). 
  32. ^ 32.0 32.1 Xu, Hong-He; Berry, Christopher M.; Stein, William E.; Wang, Yi; Tang, Peng; Fu, Qiang. Unique growth strategy in the Earth's first trees revealed in silicified fossil trunks from China. Proceedings of the National Academy of Sciences of the United States of America. 23 October 2017, 114 (45): 12009–12014 [18 May 2023]. Bibcode:2017PNAS..11412009X. PMC 5692553 . PMID 29078324. doi:10.1073/pnas.1708241114 . 
  33. ^ Stein, William E.; Berry, Christopher M.; Morris, Jennifer L.; Hernick, Linda VanAller; Mannolini, Frank; Ver Straeten, Charles; Landing, Ed; Marshall, John E. A.; Wellman, Charles H.; Beerling, David J.; Leake, Jonathan R. Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests. Current Biology. 3 February 2020, 30 (3): 321–331. PMID 31866369. S2CID 209422168. doi:10.1016/j.cub.2019.11.067 . 
  34. ^ Berry, Christopher M.; Marshall, John E.A. Lycopsid forests in the early Late Devonian paleoequatorial zone of Svalbard. Geology. December 2015, 43 (12): 1043–1046. Bibcode:2015Geo....43.1043B. ISSN 1943-2682. doi:10.1130/G37000.1  (英语). 
  35. ^ Meyer-Berthaud, B.; Soria, A.; Decombeix, A.-L. The land plant cover in the Devonian: a reassessment of the evolution of the tree habit. Geological Society, London, Special Publications. 2010, 339 (1): 59–70. Bibcode:2010GSLSP.339...59M. ISSN 0305-8719. S2CID 129915170. doi:10.1144/SP339.6 (英语). 
  36. ^ Salles, Tristan; Husson, Laurent; Lorcery, Manon; Hadler Boggiani, Beatriz. Landscape dynamics and the Phanerozoic diversification of the biosphere. Nature. 7 December 2023, 624 (7990): 115–121 [31 December 2023]. Bibcode:2023Natur.624..115S. ISSN 0028-0836. PMC 10700141 . PMID 38030724. doi:10.1038/s41586-023-06777-z (英语). 
  37. ^ Wellman, Charles H. Ultrastructure of dispersed and in situ specimens of the Devonian spore Rhabdosporites langii: evidence for the evolutionary relationships of progymnosperms. Palaeontology. 31 December 2008, 52 (1): 139–167 [25 December 2022]. S2CID 128869785. doi:10.1111/j.1475-4983.2008.00823.x. 
  38. ^ Bateman, Richard M.; Crane, Peter R.; DiMichele, William A.; Kenrick, Paul R.; Rowe, Nick P.; Speck, Thomas; Stein, William E. Early Evolution of Land Plants: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation. Annual Review of Ecology and Systematics. November 1998, 29: 263–292 [26 December 2022]. doi:10.1146/annurev.ecolsys.29.1.263. 
  39. ^ Labandeira, Conrad. Silurian to Triassic Plant and Hexapod Clades and their Associations: New Data, a Review, and Interpretations (PDF). Arthropod Systematics & Phylogeny. 30 October 2006, 63 (1): 53–94 [23 January 2023]. doi:10.3897/asp.64.e31644 . 
  40. ^ Retallack, Gregory J. Early Forest Soils and Their Role in Devonian Global Change. Science. 25 April 1997, 276 (5312): 583–585 [23 July 2023]. PMID 9110975. doi:10.1126/science.276.5312.583. 
  41. ^ Boyce, C. Kevin; Lee, Jung-Eun. Plant Evolution and Climate Over Geological Timescales. Annual Review of Earth and Planetary Sciences. 30 August 2017, 45 (1): 61–87 [20 June 2024]. ISSN 0084-6597. doi:10.1146/annurev-earth-063016-015629 (英语). 
  42. ^ 42.0 42.1 Le Hir, Guillaume; Donnadieu, Yannick; Goddéris, Yves; Meyer-Berthaud, Brigitte; Ramstein, Gilles; Blakey, Ronald C. The climate change caused by the land plant invasion in the Devonian. Earth and Planetary Science Letters. October 2011, 310 (3–4): 203–212. Bibcode:2011E&PSL.310..203L. doi:10.1016/j.epsl.2011.08.042 (英语). 
  43. ^ Rosa, Eduardo L. M.; Isbell, John L. Late Paleozoic Glaciation. Alderton, David; Elias, Scott A. (编). Encyclopedia of Geology 2nd. Academic Press. 2021: 534–545. ISBN 978-0-08-102909-1. S2CID 226643402. doi:10.1016/B978-0-08-102908-4.00063-1. 
  44. ^ Qie, Wenkun; Algeo, Thomas J.; Luo, Genming; Herrmann, Achim. Global events of the Late Paleozoic (Early Devonian to Middle Permian): A review. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 October 2019, 531: 109259 [23 December 2022]. Bibcode:2019PPP...53109259Q. S2CID 198423364. doi:10.1016/j.palaeo.2019.109259. 
  45. ^ Streel, Maurice; Caputo, Mário V.; Loboziak, Stanislas; Melo, José Henrique G. Late Frasnian–Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth-Science Reviews. November 2000, 52 (1–3): 121–173 [28 January 2023]. Bibcode:2000ESRv...52..121S. doi:10.1016/S0012-8252(00)00026-X. 
  46. ^ Mintz, Jason S.; Driese, Steven G.; White, Joseph D. Environmental and Ecological Variability of Middle Devonian (Givetian) Forests in Appalachian Basin Paleosols, New York, United States. PALAIOS. 1 January 2010, 25 (2): 85–96 [2 August 2023]. Bibcode:2010Palai..25...85M. S2CID 130624914. doi:10.2110/palo.2009.p09-086r. 
  47. ^ D’Antonio, Michael P.; Ibarra, Daniel E.; Boyce, C. Kevin. Land plant evolution decreased, rather than increased, weathering rates. Geology. 28 October 2019, 48 (1): 29–33 [28 August 2024]. ISSN 0091-7613. doi:10.1130/G46776.1 –通过GeoScienceWorld (英语). 
  48. ^ Glasspool, Ian J.; Scott, Andrew C.; Waltham, David; Pronina, Natalia; Shao, Longyi. The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science. 23 September 2015, 6: 756. ISSN 1664-462X. PMC 4585212 . PMID 26442069. doi:10.3389/fpls.2015.00756 . 
  49. ^ Glasspool, I. J.; Edwards, D.; Axe, L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology. 1 May 2004, 32 (5): 381 [17 October 2023]. Bibcode:2004Geo....32..381G. ISSN 0091-7613. doi:10.1130/G20363.1 (英语). 
  50. ^ Algeo, Thomas J.; Ingall, Ellery. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeography, Palaeoclimatology, Palaeoecology. Neoproterozoic to Paleozoic Ocean Chemistry. 6 December 2007, 256 (3): 130–155 [12 December 2023]. Bibcode:2007PPP...256..130A. ISSN 0031-0182. doi:10.1016/j.palaeo.2007.02.029 –通过Elsevier Science Direct. 
  51. ^ Marynowski, Leszek; Filipiak, Paweł; Zatoń, Michał. Geochemical and palynological study of the Upper Famennian Dasberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine. 15 January 2010, 147 (4): 527–550 [24 March 2023]. Bibcode:2010GeoM..147..527M. S2CID 140657109. doi:10.1017/S0016756809990835. 
  52. ^ Marynowski, Leszek; Filipak, Paweł. Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine. 1 May 2007, 144 (3): 569–595 [28 January 2023]. Bibcode:2007GeoM..144..569M. S2CID 129306243. doi:10.1017/S0016756807003317. 
  53. ^ Buatois, Luis A.; Davies, Neil S.; Gibling, Martin R.; Krapovickas, Verónica; Labandeira, Conrad C.; MacNaughton, Robert B.; Mángano, M. Gabriela; Minter, Nicholas J.; Shillito, Anthony P. The Invasion of the Land in Deep Time: Integrating Paleozoic Records of Paleobiology, Ichnology, Sedimentology, and Geomorphology. Integrative and Comparative Biology. 31 May 2022, 62 (2): 297–331 [2 April 2023]. PMID 35640908. doi:10.1093/icb/icac059. 
  54. ^ Dahl, Tais W.; Arens, Susanne K. M. The impacts of land plant evolution on Earth's climate and oxygenation state – An interdisciplinary review. Chemical Geology. 5 August 2020, 547: 119665 [29 September 2023]. Bibcode:2020ChGeo.54719665D. ISSN 0009-2541. S2CID 219484664. doi:10.1016/j.chemgeo.2020.119665 . 
  55. ^ Smart, Matthew S.; Filippelli, Gabriel; Gilhooly III, William P.; Marshall, John E.A.; Whiteside, Jessica H. Enhanced terrestrial nutrient release during the Devonian emergence and expansion of forests: Evidence from lacustrine phosphorus and geochemical records. Geological Society of America Bulletin. 9 November 2022 [2 August 2023]. doi:10.1130/B36384.1 . 
  56. ^ Algeo, T.J.; Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society B: Biological Sciences. 1998, 353 (1365): 113–130. PMC 1692181 . doi:10.1098/rstb.1998.0195. 
  57. ^ Becker, R. T.; Königshof, P.; Brett, C. E. Devonian climate, sea level and evolutionary events: an introduction. Geological Society, London, Special Publications. 1 January 2016, 423 (1): 1–10. Bibcode:2016GSLSP.423....1B. ISSN 0305-8719. doi:10.1144/SP423.15  (英语).